Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis

Abstract

The mammalian target of rapamycin (mTOR) signaling pathway is upregulated in the pathogenesis of many cancers. Arachidonic acid (AA) and its metabolites play critical role in the development of breast cancer, but the mechanisms through which AA promotes mammary tumorigenesis and progression are poorly understood. We found that the levels of AA and cytosolic phospholipase A2 (cPLA2) strongly correlated with the signaling activity of mTORC1 and mTORC2 as well as the expression levels of vascular epithelial growth factor (VEGF) in human breast tumor tissues. In cultured breast cancer cells, AA effectively activated both mTOR complex 1 (mTORC1) and mTORC2. Interestingly, AA-stimulated mTORC1 activation was independent of amino acids, phosphatidylinositol 3-kinase (PI3-K) and tuberous sclerosis complex 2 (TSC2), which suggests a novel mechanism for mTORC1 activation. Further studies revealed that AA stimulated mTORC1 activity through destabilization of mTOR–raptor association in ras homolog enriched in brain (Rheb)-dependent mechanism. Moreover, we showed that AA-stimulated cell proliferation and angiogenesis required mTOR activity and that the effect of AA was mediated by lipoxygenase (LOX) but not cyclooxygenase-2 (COX-2). In animal models, AA-enhanced incidences of rat mammary tumorigenesis, tumor weights and angiogenesis were inhibited by rapamycin. Our findings suggest that AA is an effective intracellular stimulus of mTOR and that AA-activated mTOR plays critical roles in angiogenesis and tumorigenesis of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Chen X, Sood S, Yang CS, Li N, Sun Z . Five-lipoxygenase pathway of arachidonic acid metabolism in carcino-genesis and cancer chemoprevention. Curr Cancer Drug Targets 2006; 6: 613–622.

    Article  CAS  Google Scholar 

  2. Horn L, Backlund M, Johnson DH . Targeting the eicosanoid pathway in non-small-cell lung cancer. Expert Opin Ther Targets 2009; 13: 675–688.

    Article  CAS  Google Scholar 

  3. Harizi H, Corcuff JB, Gualde N . Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 2008; 14: 461–469.

    Article  CAS  Google Scholar 

  4. Kim C, Kim JY, Kim JH . Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep 2008; 41: 555–559.

    Article  CAS  Google Scholar 

  5. Nakanishi M, Rosenberg DW . Roles of cPLA2alpha and arachidonic acid in cancer. Biochim Biophys Acta 2006; 1761: 1335–1343.

    Article  CAS  Google Scholar 

  6. Menna C, Olivieri F, Catalano A, Procopio A . Lipoxygenase inhibitors for cancer prevention: promises and risks. Curr Pharm Des 2010; 16: 725–733.

    Article  CAS  Google Scholar 

  7. Agrawal A, Fentiman IS . NSAIDs and breast cancer: a possible prevention and treatment strategy. Int J Clin Pract 2008; 62: 444–449.

    Article  CAS  Google Scholar 

  8. Singh-Ranger G, Salhab M, Mokbel K . The role of cyclooxygenase-2 in breast cancer: review. Breast Cancer Res Treat 2008; 109: 189–198.

    Article  CAS  Google Scholar 

  9. Ulrich CM, Bigler J, Potter JD . Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 2006; 6: 130–140.

    Article  CAS  Google Scholar 

  10. Jiang WG, Douglas-Jones AG, Mansel RE . Aberrant expression of 5-lipoxygenase-activating protein (5-LOXAP) has prognostic and survival significance in patients with breast cancer. Prostaglandins Leukot Essent Fatty Acids 2006; 74: 125–134.

    Article  CAS  Google Scholar 

  11. McCormick DL, Spicer AM . Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by N-methyl-N-nitrosourea. Cancer Lett 1987; 37: 139–146.

    Article  CAS  Google Scholar 

  12. Navarro-Tito N, Robledo T, Salazar EP . Arachidonic acid promotes FAK activation and migration in MDA-MB-231 breast cancer cells. Exp Cell Res 2008; 314: 3340–3355.

    Article  CAS  Google Scholar 

  13. Kennett SB, Roberts JD, Olden K . Requirement of protein kinase C micro activation and calpain-mediated proteolysis for arachidonic acid-stimulated adhesion of MDA-MB-435 human mammary carcinoma cells to collagen type IV. J Biol Chem 2004; 279: 3300–3307.

    Article  CAS  Google Scholar 

  14. Sengupta S, Peterson TR, Sabatini DM . Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310–322.

    Article  CAS  Google Scholar 

  15. Bai X, Jiang Y . Key factors in mTOR regulation. Cell Mol Life Sci 2010; 67: 239–253.

    Article  CAS  Google Scholar 

  16. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  Google Scholar 

  17. Foster KG, Fingar DC . Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 2010; 285: 14071–14077.

    Article  CAS  Google Scholar 

  18. Efeyan A, Sabatini DM . mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 2010; 22: 169–176.

    Article  CAS  Google Scholar 

  19. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  Google Scholar 

  20. Martinez-Orozco R, Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Perez Salazar E . Arachidonic acid promotes epithelial-to-mesenchymal-like transition in mammary epithelial cells MCF10A. Eur J Cell Biol 2010; 89: 476–488.

    Article  CAS  Google Scholar 

  21. Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev 2007; 26: 503–524.

    Article  CAS  Google Scholar 

  22. Hynes NE, Boulay A . The mTOR pathway in breast cancer. J Mammary Gland Biol Neoplasia 2006; 11: 53–61.

    Article  Google Scholar 

  23. Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122–1128.

    Article  CAS  Google Scholar 

  24. Razanamahefa L, Prouff S, Bardon S . Stimulatory effect of arachidonic acid on T-47D human breast cancer cell growth is associated with enhancement of cyclin D1 mRNA expression. Nutr Cancer 2000; 38: 274–280.

    Article  CAS  Google Scholar 

  25. Cakir Y, Plummer III HK, Tithof PK, Schuller HM . Beta-adrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol 2002; 21: 153–157.

    CAS  PubMed  Google Scholar 

  26. Zhang B, Cao H, Rao GN . Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. J Biol Chem 2006; 281: 905–914.

    Article  CAS  Google Scholar 

  27. Zhang B, Cao H, Rao GN . 15(S)-hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling. Cancer Res 2005; 65: 7283–7291.

    Article  CAS  Google Scholar 

  28. Yecies JL, Manning BD . mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med 2011; 89: 221–228.

    Article  CAS  Google Scholar 

  29. Mieulet V, Lamb RF . Tuberous sclerosis complex: linking cancer to metabolism. Trends Mol Med 2010; 16: 329–335.

    Article  CAS  Google Scholar 

  30. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496–1501.

    Article  CAS  Google Scholar 

  31. Goberdhan DC . Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? Curr Opin Investig Drugs 2010; 11: 1360–1367.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163–175.

    Article  CAS  Google Scholar 

  33. Duan S, Skaar JR, Kuchay S, Toschi A, Kanarek N, Ben-Neriah Y et al. mTOR generates an auto-amplification loop by triggering the betaTrCP- and CK1alpha-dependent degradation of DEPTOR. Mol Cell 2011; 44: 317–324.

    Article  CAS  Google Scholar 

  34. Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009; 137: 873–886.

    Article  CAS  Google Scholar 

  35. Holmes MD, Hunter DJ, Colditz GA, Stampfer MJ, Hankinson SE, Speizer FE et al. Association of dietary intake of fat and fatty acids with risk of breast cancer. JAMA 1999; 281: 914–920.

    Article  CAS  Google Scholar 

  36. Thiebaut AC, Chajes V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G et al. Dietary intakes of omega-6 and omega-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 2009; 124: 924–931.

    Article  CAS  Google Scholar 

  37. Yamashita S, Yamashita J, Ogawa M . Overexpression of group II phospholipase A2 in human breast cancer tissues is closely associated with their malignant potency. Br J Cancer 1994; 69: 1166–1170.

    Article  CAS  Google Scholar 

  38. Ye YN, Wu WK, Shin VY, Bruce IC, Wong BC, Cho CH . Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005; 26: 827–834.

    Article  CAS  Google Scholar 

  39. Paine E, Palmantier R, Akiyama SK, Olden K, Roberts JD . Arachidonic acid activates mitogen-activated protein (MAP) kinase-activated protein kinase 2 and mediates adhesion of a human breast carcinoma cell line to collagen type IV through a p38 MAP kinase-dependent pathway. J Biol Chem 2000; 275: 11284–11290.

    Article  CAS  Google Scholar 

  40. Navarro-Tito N, Soto-Guzman A, Castro-Sanchez L, Martinez-Orozco R, Salazar EP . Oleic acid promotes migration on MDA-MB-231 breast cancer cells through an arachidonic acid-dependent pathway. Int J Biochem Cell Biol 2010; 42: 306–317.

    Article  CAS  Google Scholar 

  41. Buzzard CJ, Pfister SL, Campbell WB . Endothelium-dependent contractions in rabbit pulmonary artery are mediated by thromboxane A2. Circ Res 1993; 72: 1023–1034.

    Article  CAS  Google Scholar 

  42. Zhou L, Vessby B, Nilsson A . Quantitative role of plasma free fatty acids in the supply of arachidonic acid to extrahepatic tissues in rats. J Nutr 2002; 132: 2626–2631.

    Article  CAS  Google Scholar 

  43. Hyde CA, Missailidis S . Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis. Int Immunopharmacol 2009; 9: 701–715.

    Article  CAS  Google Scholar 

  44. Linkous AG, Yazlovitskaya EM, Hallahan DE . Cytosolic phospholipase A2 and lysophospholipids in tumor angiogenesis. J Natl Cancer Inst 2010; 102: 1398–1412.

    Article  CAS  Google Scholar 

  45. Meyer AM, Dwyer-Nield LD, Hurteau GJ, Keith RL, O’Leary E, You M et al. Decreased lung tumorigenesis in mice genetically deficient in cytosolic phospholipase A2. Carcinogenesis 2004; 25: 1517–1524.

    Article  CAS  Google Scholar 

  46. Weiser-Evans MC, Wang XQ, Amin J, Van Putten V, Choudhary R, Winn RA et al. Depletion of cytosolic phospholipase A2 in bone marrow-derived macrophages protects against lung cancer progression and metastasis. Cancer Res 2009; 69: 1733–1738.

    Article  CAS  Google Scholar 

  47. Kuehn HS, Jung MY, Beaven MA, Metcalfe DD, Gilfillan AM . Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release. J Biol Chem 2011; 286: 391–402.

    Article  CAS  Google Scholar 

  48. Camp RL, Rimm EB, Rimm DL . Met expression is associated with poor outcome in patients with axillary lymph node negative breast carcinoma. Cancer 1999; 86: 2259–2265.

    Article  CAS  Google Scholar 

  49. Li M, Zhao L, Liu J, Liu A, Jia C, Ma D et al. Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 2010; 22: 1469–1476.

    Article  CAS  Google Scholar 

  50. Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y et al. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977–980.

    Article  CAS  Google Scholar 

  51. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–168.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the gift of TSC2+/+ and TSC2−/− MEFs from Dr David J Kwiatkowski (Brigham and Women's Hospital, Boston, MA, USA). This work was supported by The State Key Development Program for Basic Research of China (No. 2009CB 918904), National Natural Sciences Foundation of China (30870955, 91029727, 30900555) and Program for New Century Excellent Talents in University (NCET-08-0646).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-F Dai or X-C Bai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, ZH., Su, YC., Lai, PL. et al. Critical role of arachidonic acid-activated mTOR signaling in breast carcinogenesis and angiogenesis. Oncogene 32, 160–170 (2013). https://doi.org/10.1038/onc.2012.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.47

Keywords

This article is cited by

Search

Quick links