Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells

Abstract

Elucidating signaling events between tumor cells and their microenvironment is a major challenge in understanding cancer development. Drosophila melanogaster has emerged as an important tool for dissecting the genetic circuits tumors depend on because their imaginal discs, simple epithelia present in the larva, can be genetically manipulated to serve as models to study cancer mechanisms. Imaginal disc cells mutant for the tumor-suppressor gene scribble (scrib) lose apical-basal polarity and have the potential to form large neoplastic tumors. Interestingly, when scrib mutant (scrib) cells are surrounded by normal cells the scrib population is eliminated. However, the signals and mechanisms that cause the elimination of clones of scrib cells are poorly understood. Here, we analyzed the role of Stat, a component of the JAK/STAT signaling pathway, in tissues with clones of scrib cells. We found that Stat activity is required in normal cells for the elimination of neighboring scrib cells. Importantly, these competitive defects of stat mutant cells are not simply due to defects in cell proliferation because even stat cells manipulated to hyperproliferate are unable to eliminate scrib cells. These data identify Stat activity as a critical determinant of whether or not a tissue can eliminate abnormal cells and provide an important step forward in understanding the complex network of signals operating in and around tumorigenic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Blair SS . Genetic mosaic techniques for studying Drosophila development. Development 2003; 130: 5065–5072.

    Article  CAS  PubMed  Google Scholar 

  3. Brand AH, Perrimon N . Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–415.

    CAS  PubMed  Google Scholar 

  4. Xu T, Rubin GM . Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993; 117: 1223–1237.

    CAS  PubMed  Google Scholar 

  5. Humbert PO, Grzeschik NA, Brumby AM, Galea R, Elsum I, Richardson HE . Control of tumourigenesis by the Scribble/Dlg/Lgl polarity module. Oncogene 2008; 27: 6888–6907.

    Article  CAS  PubMed  Google Scholar 

  6. Bilder D, Li M, Perrimon N . Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 2000; 289: 113–116.

    Article  CAS  PubMed  Google Scholar 

  7. Brumby AM, Richardson HE . scribble mutants cooperate with oncogenic Ras or Notch to cause neoplastic overgrowth in Drosophila. EMBO J 2003; 22: 5769–5779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Igaki T, Pastor-Pareja JC, Aonuma H, Miura M, Xu T . Intrinsic tumor suppression and epithelial maintenance by endocytic activation of Eiger/TNF signaling in Drosophila. Dev Cell 2009; 16: 458–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Uhlirova M, Jasper H, Bohmann D . Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model. Proc Natl Acad Sci USA 2005; 102: 13123–13128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Igaki T, Pagliarini RA, Xu T . Loss of cell polarity drives tumor growth and invasion through JNK activation in Drosophila. Curr Biol 2006; 16: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  11. Cordero JB, Macagno JP, Stefanatos RK, Strathdee KE, Cagan RL, Vidal M . Oncogenic Ras diverts a host TNF tumor suppressor activity into tumor promoter. Dev Cell 2010; 18: 999–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pagliarini RA, Xu T . A genetic screen in Drosophila for metastatic behavior. Science 2003; 302: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  13. Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T . Elimination of Oncogenic Neighbors by JNK-Mediated Engulfment in Drosophila. Dev Cell 2011; 20: 315–328.

    Article  CAS  PubMed  Google Scholar 

  14. Leong GR, Goulding KR, Amin N, Richardson HE, Brumby AM . Scribble mutants promote aPKC and JNK-dependent epithelial neoplasia independently of Crumbs. BMC Biol 2009; 7: 62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Doggett K, Grusche FA, Richardson HE, Brumby AM . Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling. BMC Dev Biol 2011; 11: 57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen CL, Schroeder MC, Kango-Singh M, Tao C, Halder G . Tumor suppression by cell competition through regulation of the Hippo pathway. Proc Natl Acad Sci USA 2012; 109: 484–489.

    Article  CAS  PubMed  Google Scholar 

  17. Moreno E . Is cell competition relevant to cancer? Nat Rev Cancer 2008; 8: 141–147.

    Article  CAS  PubMed  Google Scholar 

  18. Johnston LA . Competitive interactions between cells: death, growth, and geography. Science 2009; 324: 1679–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Morata G, Ripoll P . Minutes: mutants of drosophila autonomously affecting cell division rate. Dev Biol 1975; 42: 211–221.

    Article  CAS  PubMed  Google Scholar 

  20. de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA . Drosophila myc regulates organ size by inducing cell competition. Cell 2004; 117: 107–116.

    Article  CAS  PubMed  Google Scholar 

  21. Halder G, Johnson RL . Hippo signaling: growth control and beyond. Development 2011; 138: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neto-Silva RM, de Beco S, Johnston LA . Evidence for a growth-stabilizing regulatory feedback mechanism between Myc and Yorkie, the Drosophila homolog of Yap. Dev Cell 2010; 19: 507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ziosi M, Baena-Lopez LA, Grifoni D, Froldi F, Pession A, Garoia F et al. dMyc functions downstream of Yorkie to promote the supercompetitive behavior of hippo pathway mutant cells. PLoS Genet 2010; 6: e10011140.

    Article  Google Scholar 

  24. Igaki T . Correcting developmental errors by apoptosis: lessons from Drosophila JNK signaling. Apoptosis 2009; 14: 1021–1028.

    Article  PubMed  Google Scholar 

  25. Zeidler MP, Bach EA, Perrimon N . The roles of the Drosophila JAK/STAT pathway. Oncogene 2000; 19: 2598–2606.

    Article  CAS  PubMed  Google Scholar 

  26. Yuan M, Tomlinson V, Lara R, Holliday D, Chelala C, Harada T et al. Yes-associated protein (YAP) functions as a tumor suppressor in breast. Cell Death Differ 2008; 15: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  27. Newsome TP, Asling B, Dickson BJ . Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 2000; 127: 851–860.

    CAS  PubMed  Google Scholar 

  28. Hamaratoglu F, Willecke M, Kango-Singh M, Nolo R, Hyun E, Tao C et al. The tumour-suppressor genes NF2/Merlin and Expanded act through Hippo signalling to regulate cell proliferation and apoptosis. Nat Cell Biol 2006; 8: 27–36.

    Article  CAS  PubMed  Google Scholar 

  29. Grusche FA, Degoutin JL, Richardson HE, Harvey KF . The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 2010; 350: 255–266.

    Article  PubMed  Google Scholar 

  30. Tyler DM, Li W, Zhuo N, Pellock B, Baker NE . Genes affecting cell competition in Drosophila. Genetics 2007; 175: 643–657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H, Perrimon N et al. GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 2007; 7: 323–331.

    Article  CAS  PubMed  Google Scholar 

  32. Flaherty MS, Zavadil J, Ekas LA, Bach EA . Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of notch signaling by the JAK/STAT pathway. Dev Dyn 2009; 238: 2235–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Willecke M, Hamaratoglu F, Sansores-Garcia L, Tao C, Halder G . Boundaries of Dachsous Cadherin activity modulate the Hippo signaling pathway to induce cell proliferation. Proc Natl Acad Sci USA 2008; 105: 14897–14902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rogulja D, Rauskolb C, Irvine KD . Morphogen control of wing growth through the Fat signaling pathway. Dev Cell 2008; 15: 309–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA . JAK/STAT signaling promotes regional specification by negatively regulating wingless expression in Drosophila. Development 2006; 133: 4721–4729.

    Article  CAS  PubMed  Google Scholar 

  36. Wu M, Pastor-Pareja JC, Xu T . Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature 2010; 463: 545–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yu H, Jove R . The STATs of cancer--new molecular targets come of age. Nat Rev Cancer 2004; 4: 97–105.

    Article  CAS  PubMed  Google Scholar 

  38. Bilder D, Perrimon N . Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 2000; 403: 676–680.

    Article  CAS  PubMed  Google Scholar 

  39. Silver DL, Montell DJ . Paracrine signaling through the JAK/STAT pathway activates invasive behavior of ovarian epithelial cells in Drosophila. Cell 2001; 107: 831–841.

    Article  CAS  PubMed  Google Scholar 

  40. Xu T, Wang W, Zhang S, Stewart RA, Yu W . Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 1995; 121: 1053–1063.

    CAS  PubMed  Google Scholar 

  41. Lee T, Luo L . Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci 2001; 24: 251–254.

    Article  CAS  PubMed  Google Scholar 

  42. Narisawa A, Komatsuzaki S, Kikuchi A, Niihori T, Aoki Y, Fujiwara K et al. Mutations in genes encoding the glycine cleavage system predispose to neural tube defects in mice and humans. Hum Mol Genet 21: 1496–1503.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Erika Bach, Hugo Bellen, Andreas Bergmann, David Bilder, Michael Galko, Robert Holmgren, Kenneth Irvine, Jin Jiang, Ed Laufer, Graeme Mardon, Sang-Chul Nam, Duojia Pan, Hong Wen and the Developmental Studies Hybridoma Bank (University of Iowa) for fly stocks and antibodies. We thank Leisa McCord for artwork and the Halder lab for discussions. This work was supported by an NIH grant to GH and a Baylor Research Advocates for Student Scientists scholarship to MCS.

Author contributions: MCS, C-LC, and GH conceived the project and designed the research. MCS, C-LC, and KG performed the experiments and data analysis. MCS, C-LC, and GH wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Halder.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, M., Chen, CL., Gajewski, K. et al. A non-cell-autonomous tumor suppressor role for Stat in eliminating oncogenic scribble cells. Oncogene 32, 4471–4479 (2013). https://doi.org/10.1038/onc.2012.476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.476

Keywords

This article is cited by

Search

Quick links