Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial−mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells

Abstract

Protein kinase C delta (PKCδ) is a serine (Ser)/threonine kinase, which regulates numerous cellular processes, including proliferation, differentiation, migration and apoptosis. In the current study, Chinese hamster ovary cells were transfected with either a constitutively activated PKCδ or a dominant negative PKCδ, phosphoprotein enrichment, two-dimensional difference gel electrophoresis and mass spectrometry was combined to globally identified candidates of PKCδ cascade. We found that Bcl-2 associated athanogene 3 (BAG3) was one of the targets of PKCδ cascade, and BAG3 interacted with PKCδ in vivo. In addition, we clarified that BAG3 was phosphorylate at Ser187 site in a PKCδ-dependent manner in vivo. BAG3 has been implicated in multiple cellular functions, including proliferation, differentiation, apoptosis, migration, invasion, macroautophagy and so on. We generated wild-type (WT)-, Ser187Ala (S187A)- or Ser187Asp (S187D)-BAG3 stably expressing FRO cells, and noticed that phosphorylation state of BAG3 influenced FRO morphology. Finally, for the first time, we showed that BAG3 was implicated in epithelial−mesenchymal transition (EMT) procedure, and phosphorylation state at Ser187 site had a critical role in EMT regulation by BAG3. Collectively, the current study indicates that BAG3 is a novel substrate of PKCδ, and PKCδ-mediated phosphorylation of BAG3 is implicated in EMT and invasiveness of thyroid cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Newton AC . Regulation of protein kinase C. Curr Opin Cell Biol 1997; 9: 161–167.

    Article  CAS  PubMed  Google Scholar 

  2. Mischak H, Pierce JH, Goodnight J, Kazanietz MG, Blumberg PM, Mushinski JF . Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J Biol Chem 1993; 268: 20110–20115.

    CAS  PubMed  Google Scholar 

  3. Kikkawa U, Matsuzaki H, Yamamoto T . Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem 2002; 132: 831–839.

    Article  CAS  PubMed  Google Scholar 

  4. Steinberg SF . Distinctive activation mechanisms and functions for protein kinase Cdelta. Biochem J 2004; 384: 449–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watanabe T, Ono Y, Taniyama Y, Hazama K, Igarashi K, Ogita K et al. Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C-delta subspecies. Proc Natl Acad Sci USA 1992; 89: 10159–10163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li C, Wernig F, Leitges M, Hu Y, Xu Q . Mechanical stress-activated PKCdelta regulates smooth muscle cell migration. Faseb J 2003; 17: 2106–2108.

    Article  CAS  PubMed  Google Scholar 

  7. Humphries MJ, Limesand KH, Schneider JC, Nakayama KI, Anderson SM, Reyland ME . Suppression of apoptosis in the protein kinase Cdelta null mouse in vivo. J Biol Chem 2006; 281: 9728–9737.

    Article  CAS  PubMed  Google Scholar 

  8. Lee JH, Takahashi T, Yasuhara N, Inazawa J, Kamada S, Tsujimoto Y . Bis a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 1999; 18: 6183–6190.

    Article  CAS  PubMed  Google Scholar 

  9. Takayama S, Xie Z, Reed JC . An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 1999; 274: 781–786.

    Article  CAS  PubMed  Google Scholar 

  10. Doong H, Price J, Kim YS, Gasbarre C, Probst J, Liotta LA et al. CAIR-1/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene 2000; 19: 4385–4395.

    Article  CAS  PubMed  Google Scholar 

  11. Chiappetta G, Ammirante M, Basile A, Rosati A, Festa M, Monaco M et al. The antiapoptotic protein BAG3 is expressed in thyroid carcinomas and modulates apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Clin Endocrinol Metab 2007; 92: 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  12. Liao Q, Ozawa F, Friess H, Zimmermann A, Takayama S, Reed JC et al. The anti-apoptotic protein BAG-3 is overexpressed in pancreatic cancer and induced by heat stress in pancreatic cancer cell lines. FEBS Lett 2001; 503: 151–157.

    Article  CAS  PubMed  Google Scholar 

  13. Romano MF, Festa M, Pagliuca G, Lerose R, Bisogni R, Chiurazzi F et al. BAG3 protein controls B-chronic lymphocytic leukaemia cell apoptosis. Cell Death Differ 2003; 10: 383–385.

    Article  CAS  PubMed  Google Scholar 

  14. Romano MF, Festa M, Petrella A, Rosati A, Pascale M, Bisogni R et al. BAG3 protein regulates cell survival in childhood acute lymphoblastic leukemia cells. Cancer Biol Ther 2003; 2: 508–510.

    Article  CAS  PubMed  Google Scholar 

  15. Liu P, Xu B, Li J, Lu H . BAG3 gene silencing sensitizes leukemic cells to Bortezomib-induced apoptosis. FEBS Lett 2009; 583: 401–406.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki M, Iwasaki M, Sugio A, Hishiya A, Tanaka R, Endo T et al. BAG3 (BCL2-associated athanogene 3) interacts with MMP-2 to positively regulate invasion by ovarian carcinoma cells. Cancer Lett 2011; 303: 65–71.

    Article  CAS  PubMed  Google Scholar 

  17. Du ZX, Meng X, Zhang HY, Guan Y, Wang HQ . Caspase-dependent cleavage of BAG3 in proteasome inhibitors-induced apoptosis in thyroid cancer cells. Biochem Biophys Res Commun 2008; 369: 894–898.

    Article  CAS  PubMed  Google Scholar 

  18. Du ZX, Yan Y, Zhang HY, Liu BQ, Gao YY, Niu XF et al. Proteasome inhibition induces a p38 MAPK pathway-dependent antiapoptotic program via Nrf2 in thyroid cancer cells. J Clin Endocrinol Metab 2011; 96: E763–E771.

    Article  CAS  PubMed  Google Scholar 

  19. Du ZX, Zhang HY, Meng X, Gao YY, Zou RL, Liu BQ et al. Proteasome inhibitor MG132 induces BAG3 expression through activation of heat shock factor 1. J Cell Physiol 2009; 218: 631–637.

    Article  CAS  PubMed  Google Scholar 

  20. Iwasaki M, Homma S, Hishiya A, Dolezal SJ, Reed JC, Takayama S . BAG3 regulates motility and adhesion of epithelial cancer cells. Cancer Res 2007; 67: 10252–10259.

    Article  CAS  PubMed  Google Scholar 

  21. Kassis JN, Guancial EA, Doong H, Virador V, Kohn EC . CAIR-1/BAG-3 modulates cell adhesion and migration by downregulating activity of focal adhesion proteins. Exp Cell Res 2006; 312: 2962–2971.

    Article  CAS  PubMed  Google Scholar 

  22. Bozdogan O, Atasoy P, Bozdogan N, Erekul S, Batislam E, Yilmaz E et al. BAG-1 expression in hyperplastic and neoplastic prostate tissue: is there any relationship with BCL-related proteins and androgen receptor status? Tumori 2005; 91: 539–545.

    CAS  PubMed  Google Scholar 

  23. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  24. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Kung AL, Davies FE et al. Antimyeloma activity of heat shock protein-90 inhibition. Blood 2006; 107: 1092–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 2007; 213: 374–383.

    CAS  PubMed  Google Scholar 

  26. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE et al. Bortezomib down-regulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 2008; 111: 1309–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeisberg M, Neilson EG . Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 2009; 119: 1429–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Doong H, Vrailas A, Kohn EC . What’s in the ‘BAG’?--A functional domain analysis of the BAG-family proteins. Cancer Lett 2002; 188: 25–32.

    Article  CAS  PubMed  Google Scholar 

  29. Rosati A, Ammirante M, Gentilella A, Basile A, Festa M, Pascale M et al. Apoptosis inhibition in cancer cells: a novel molecular pathway that involves BAG3 protein. Int J Biochem Cell Biol 2007; 39: 1337–1342.

    Article  CAS  PubMed  Google Scholar 

  30. Pagliuca MG, Lerose R, Cigliano S, Leone A . Regulation by heavy metals and temperature of the human BAG-3 gene, a modulator of Hsp70 activity. FEBS Lett 2003; 541: 11–15.

    Article  CAS  PubMed  Google Scholar 

  31. Rosati A, Leone A, Del Valle L, Amini S, Khalili K, Turco MC . Evidence for BAG3 modulation of HIV-1 gene transcription. J Cell Physiol 2007; 210: 676–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carra S . The stress-inducible HspB8-Bag3 complex induces the eIF2alpha kinase pathway: implications for protein quality control and viral factory degradation? Autophagy 2009; 5: 428–429.

    Article  CAS  PubMed  Google Scholar 

  33. Carra S, Brunsting JF, Lambert H, Landry J, Kampinga HH . HspB8 participates in protein quality control by a non-chaperone-like mechanism that requires eIF2{alpha} phosphorylation. J Biol Chem 2009; 284: 5523–5532.

    Article  CAS  PubMed  Google Scholar 

  34. Carra S, Seguin SJ, Lambert H, Landry J . HSPB8 chaperone activity towards poly-Q containing proteins depends on its association with BAG3, a stimulator of macroautophagy. J Biol Chem 2008; 283: 1437–1444.

    Article  CAS  PubMed  Google Scholar 

  35. Huber MA, Kraut N, Beug H . Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

    Article  CAS  PubMed  Google Scholar 

  36. Arias AM . Epithelial mesenchymal interactions in cancer and development. Cell 2001; 105: 425–431.

    Article  CAS  PubMed  Google Scholar 

  37. Gamerdinger M, Carra S, Behl C . Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med 2011; 89: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  38. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C . Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 2009; 28: 889–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 2006; 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  40. Brabletz T, Jung A, Hermann K, Gunther K, Hohenberger W, Kirchner T . Nuclear overexpression of the oncoprotein beta-catenin in colorectal cancer is localized predominantly at the invasion front. Pathol Res Pract 1998; 194: 701–704.

    Article  CAS  PubMed  Google Scholar 

  41. Gavert N, Ben-Ze’ev A . beta-Catenin signaling in biological control and cancer. J Cell Biochem 2007; 102: 820–828.

    Article  CAS  PubMed  Google Scholar 

  42. Fan J, Guan S, Cheng CF, Cho M, Fields JW, Chen M et al. PKCdelta clustering at the leading edge and mediating growth factor-enhanced, but not ecm-initiated, dermal fibroblast migration. J Invest Dermatol 2006; 126: 1233–1243.

    Article  CAS  PubMed  Google Scholar 

  43. Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL . Dynamic actin remodeling during epithelial-mesenchymal transition depends on increased moesin expression. Mol Biol Cell 22: 4750–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31070697 and 31170727), Program for LNET (LJQ2011083) and Foundation of Liaoning Educational Committee (L2010561) to H-Q Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-Q Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, N., Du, ZX., Zong, ZH. et al. PKCδ-mediated phosphorylation of BAG3 at Ser187 site induces epithelial−mesenchymal transition and enhances invasiveness in thyroid cancer FRO cells. Oncogene 32, 4539–4548 (2013). https://doi.org/10.1038/onc.2012.466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.466

Keywords

This article is cited by

Search

Quick links