Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ambra1 at the crossroad between autophagy and cell death

Abstract

Autophagy is a self-digesting mechanism responsible for the degradation and recycling of most intracellular macromolecules and the removal of damaged organelles by the lysosome. An impressive number of recent studies have provided key information about the regulation of autophagy and its role in cell survival during nutrient depletion and many other stressful situations. In particular, many evidences have highlighted a crucial role of dysregulated autophagy in oncogenesis. Perturbations of the autophagic pathway have been shown to contribute to tumor development. Moreover, cancer cells have developed several mechanisms that allow them to evade chemotherapy-induced cell death, as well as to use autophagy-associated pathways, to potentiate their survival. In this regard, a complex crosstalk between autophagy and apoptosis has recently emerged; the understanding of the molecular mechanisms regulating this interplay may provide new hints on how to properly modulate these processes to halt cancer. Indeed, key proteins originally thought to be apoptosis-specific inhibitors also block autophagy, while apoptosis proteolytic enzymes hamper autophagy by cleaving autophagy-specific proteins and, in some cases, converting them into proapoptotic factors. This review is focused on the role that Ambra1, a central component of the autophagosome formation machinery, has in the switch between autophagy and apoptosis and its implication in cancer development and chemotherapy resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Klionsky DJ . Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 2007; 8: 931–937.

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima N . Physiological functions of autophagy. Curr Top Microbiol Immunol 2009; 335: 71–84.

    CAS  PubMed  Google Scholar 

  3. Deretic V, Levine B . Autophagy, immunity, and microbial adaptations. Cell Host Microbe 2009; 5: 527–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kroemer G, Marino G, Levine B . Autophagy and the integrated stress response. Mol Cell 2010; 40: 280–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N, Levine B, Cuervo AM, Klionsky DJ . Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mizushima N, Yoshimori T, Ohsumi Y . The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 2011; 27: 107–132.

    Article  CAS  PubMed  Google Scholar 

  7. Orenstein SJ, Cuervo AM . Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Semin Cell Dev Biol 2010; 21: 719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Burman C, Ktistakis NT . Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 2010; 584: 1302–1312.

    Article  CAS  PubMed  Google Scholar 

  9. Mehrpour M, Esclatine A, Beau I, Codogno P . Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20: 748–762.

    Article  PubMed  Google Scholar 

  10. Jahreiss L, Menzies FM, Rubinsztein DC . The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 2008; 9: 574–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dikic I, Johansen T, Kirkin V . Selective autophagy in cancer development and therapy. Cancer Res 2010; 70: 3431–3434.

    Article  CAS  PubMed  Google Scholar 

  12. Li WW, Li J, Bao JK . Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012; 69: 1125–1136.

    Article  CAS  PubMed  Google Scholar 

  13. Arias E, Cuervo AM . Chaperone-mediated autophagy in protein quality control. Curr Opin Cell Biol 2011; 23: 184–189.

    Article  CAS  PubMed  Google Scholar 

  14. Yang Z, Klionsky DJ . Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010; 22: 124–131.

    Article  CAS  PubMed  Google Scholar 

  15. Jung CH, Ro SH, Cao J, Otto NM, Kim DH . mTOR regulation of autophagy. FEBS Lett 2010; 584: 1287–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981–1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simonsen A, Tooze SA . Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol 2009; 186: 773–782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182: 685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. He C, Levine B . The Beclin 1 interactome. Curr Opin Cell Biol 2010; 22: 140–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R et al. Ambra1 regulates autophagy and development of the nervous system. Nature 2007; 447: 1121–1125.

    CAS  PubMed  Google Scholar 

  22. Itakura E, Kishi C, Inoue K, Mizushima N . Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008; 19: 5360–5372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Q, Fan W, Chen K, Ding X, Chen S, Zhong Q . Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase. Proc Natl Acad Sci USA 2008; 105: 19211–19216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009; 11: 385–396.

    Article  CAS  PubMed  Google Scholar 

  25. Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT . Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol 2009; 11: 468–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G et al. Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 1998; 72: 8586–8596.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sinha S, Levine B . The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 2008; 27 (Suppl 1): S137–S148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    Article  CAS  PubMed  Google Scholar 

  29. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B . JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678–688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wirawan E, Lippens S, Vanden Berghe T, Romagnoli A, Fimia GM, Piacentini M et al. Beclin1: a role in membrane dynamics and beyond. Autophagy 2012; 8: 6–17.

    Article  CAS  PubMed  Google Scholar 

  31. Abrahamsen H, Stenmark H, Platta HW . Ubiquitination and phosphorylation of Beclin 1 and its binding partners: Tuning class III phosphatidylinositol 3-kinase activity and tumor suppression. FEBS Lett 2012; 586: 1584–1591.

    Article  CAS  PubMed  Google Scholar 

  32. Kang R, Zeh HJ, Lotze MT, Tang D . The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 2011; 18: 571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM et al. Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 2011; 30: 1195–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Di Bartolomeo S, Corazzari M, Nazio F, Oliverio S, Lisi G, Antonioli M et al. The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 2010; 191: 155–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, Sadiq O et al. Bim inhibits autophagy by recruiting Beclin 1 to microtubules. Mol Cell 2012; 47: 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010; 141: 656–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Van Humbeeck C, Cornelissen T, Hofkens H, Mandemakers W, Gevaert K, De Strooper B et al. Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 2011; 31: 10249–10261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G . Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8: 741–752.

    Article  CAS  PubMed  Google Scholar 

  39. Fimia GM, Piacentini M . Regulation of autophagy in mammals and its interplay with apoptosis. Cell Mol Life Sci 2010; 67: 1581–1588.

    Article  CAS  PubMed  Google Scholar 

  40. Chang NC, Nguyen M, Germain M, Shore GC . Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 2010; 29: 606–618.

    Article  CAS  PubMed  Google Scholar 

  41. Levine B, Sinha S, Kroemer G . Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008; 4: 600–606.

    Article  CAS  PubMed  Google Scholar 

  42. Adams JM, Cory S . Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 2007; 19: 488–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee JS, Li Q, Lee JY, Lee SH, Jeong JH, Lee HR et al. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 2009; 11: 1355–1362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei Y, Sinha S, Levine B . Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 2008; 4: 949–951.

    Article  CAS  PubMed  Google Scholar 

  45. Lei K, Davis RJ . JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100: 2432–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Donovan N, Becker EB, Konishi Y, Bonni A . JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 2002; 277: 40944–40949.

    Article  CAS  PubMed  Google Scholar 

  47. Cho DH, Jo YK, Hwang JJ, Lee YM, Roh SA, Kim JC . Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 2009; 274: 95–100.

    Article  CAS  PubMed  Google Scholar 

  48. Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 2010; 1: e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li H, Wang P, Sun Q, Ding WX, Yin XM, Sobol RW et al. Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 2011; 71: 3625–3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo S, Rubinsztein DC . Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 2010; 17: 268–277.

    Article  CAS  PubMed  Google Scholar 

  51. Russo R, Berliocchi L, Adornetto A, Varano GP, Cavaliere F, Nucci C et al. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo. Cell Death Dis 2011; 2: e144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006; 8: 1124–1132.

    Article  CAS  PubMed  Google Scholar 

  53. Betin VM, Lane JD . Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 2009; 122: 2554–2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, Fung C et al. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 2010; 142: 590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rubinstein AD, Eisenstein M, Ber Y, Bialik S, Kimchi A . The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell 2011; 44: 698–709.

    Article  CAS  PubMed  Google Scholar 

  56. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H . Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 2010; 6: 891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cecconi F, Piacentini M, Fimia GM . The involvement of cell death and survival in neural tube defects: a distinct role for apoptosis and autophagy? Cell Death Differ 2008; 15: 1170–1177.

    Article  CAS  PubMed  Google Scholar 

  58. Corazzari M, Fimia GM, Piacentini M . Dismantling the autophagic arsenal when it is time to die: concerted AMBRA1 degradation by caspases and calpains. Autophagy 2012; 8: 1255–1257.

    Article  CAS  PubMed  Google Scholar 

  59. Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S et al. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 2012; 19: 1495–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402: 672–676.

    Article  CAS  PubMed  Google Scholar 

  61. Mathew R, White E . Autophagy in tumorigenesis and energy metabolism: friend by day, foe by night. Curr Opin Genet Dev 2011; 21: 113–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25: 795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137: 1062–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 2011; 193: 275–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10: 51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M . A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 2010; 1: e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 1999; 59: 59–65.

    Article  CAS  PubMed  Google Scholar 

  68. Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112: 1809–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH et al. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 2006; 8: 688–699.

    Article  CAS  PubMed  Google Scholar 

  70. Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007; 9: 1142–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Amaravadi RK, Thompson CB . The roles of therapy-induced autophagy and necrosis in cancer treatment. Clin Cancer Res 2007; 13: 7271–7279.

    Article  CAS  PubMed  Google Scholar 

  72. Livesey KM, Tang D, Zeh HJ, Lotze MT . Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 2009; 10: 1269–1279.

    CAS  PubMed  Google Scholar 

  73. Armstrong JL, Corazzari M, Martin S, Pagliarini V, Falasca L, Hill DS et al. Oncogenic B-RAF signaling in melanoma impairs the therapeutic advantage of autophagy inhibition. Clin Cancer Res 2011; 17: 2216–2226.

    Article  CAS  PubMed  Google Scholar 

  74. Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119: 1359–1372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Velasco G, Sanchez C, Guzman M . Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 2012; 12: 436–444.

    Article  CAS  PubMed  Google Scholar 

  76. Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334: 1573–1577.

    Article  CAS  PubMed  Google Scholar 

  77. Behrends C, Sowa ME, Gygi SP, Harper JW . Network organization of the human autophagy system. Nature 2010; 466: 68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J et al. Function and molecular mechanism of acetylation in autophagy regulation. Science 2012; 336: 474–477.

    Article  CAS  PubMed  Google Scholar 

  79. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA 2008; 105: 10762–10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R et al. Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell 2008; 31: 438–448.

    Article  CAS  PubMed  Google Scholar 

  81. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44: 325–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wagner SA, Beli P, Weinert BT, Nielsen ML, Cox J, Mann M et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol Cell Proteomics 2011; 10: 013284.

    Article  PubMed  CAS  Google Scholar 

  83. Bennett EJ, Rush J, Gygi SP, Harper JW . Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell 2010; 143: 951–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jin J, Arias EE, Chen J, Harper JW, Walter JC . A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 2006; 23: 709–721.

    Article  CAS  PubMed  Google Scholar 

  85. Schwartz AL, Ciechanover A . Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009; 49: 73–96.

    Article  CAS  PubMed  Google Scholar 

  86. Hoeller D, Dikic I . Targeting the ubiquitin system in cancer therapy. Nature 2009; 458: 438–444.

    Article  CAS  PubMed  Google Scholar 

  87. Lipkowitz S, Weissman AM . RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011; 11: 629–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 2012; 40 (Database issue): D71–D75.

  89. Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 2012; 40 (Database issue): D261–D270.

    Article  CAS  PubMed  Google Scholar 

  90. Maglott D, Ostell J, Pruitt KD, Tatusova T . Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2011; 39 (Database issue): D52–D57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Ministry of University FIRB, Compagnia di San Paolo to MP, the Ministry of Health of Italy ‘Ricerca Corrente’ and ‘Ricerca Finalizzata’ to MP and GMF, AIRC to MP and MC, and Telethon to GMF. The support of the EU grant ‘Transpath ‘ Marie Curie project to MP is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Piacentini.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fimia, G., Corazzari, M., Antonioli, M. et al. Ambra1 at the crossroad between autophagy and cell death. Oncogene 32, 3311–3318 (2013). https://doi.org/10.1038/onc.2012.455

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.455

Keywords

This article is cited by

Search

Quick links