Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors

Abstract

The epidermal growth factor receptor (EGFR) is overexpressed and activated in many human cancers and predicts poor patient prognosis. Targeting the kinase domain with specific EGFR tyrosine kinase inhibitors (TKIs) like gefitinib and erlotinib has been used in anticancer treatments. However, patient response rates in different human cancers were initially low. Only a subgroup of non-small-cell lung cancer (NSCLC) patients harboring EGFR-activating mutations responds to EGFR TKI treatment, but most of these responders relapse and acquire resistance. Recent clinical studies have demonstrated that MET proto-oncogene overexpression correlates with resistance to EGFR TKI treatment. Similarly to MET overexpression, the tumor microenvironment-derived ligand hepatocyte growth factor (HGF) was shown to activate Met and thereby induce short-term resistance to EGFR TKI treatment in gefitinib-sensitive NSCLC cell lines in vitro. However, only little is known about the HGF/Met-induced EGFR TKI resistance mechanism in other human cancer types. Therefore, in order to develop possible new anticancer strategies for diverse human cancers, we screened 12 carcinoma cell lines originating from the breast, kidney, liver and tongue for HGF-induced EGFR tyrosine kinase (TK)-inhibition. In addition, in order to advance our understanding of a TK-inactive EGFR, we used EGFR co-immunoprecipitation, followed by mass spectrometry to identify novel HGF-induced EGFR binding partners, which are potentially involved in tyrosine kinase-independent EGFR signaling mechanisms. Here we show for the first time that HGF-induced EGFR TK-inhibition is a very common mechanism in human cancers, and that the kinase-inactive EGFR directly interacts with and stabilizes several cancer-relevant proteins, including the receptor tyrosine kinases Axl and EphA2, and the CUB domain-containing protein-1. This study has strong implications for the development of new anticancer strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nicholson RI, Gee JM, Harper ME . EGFR and cancer prognosis. J Cancer 2001; 37 (Suppl 4): S9–S15.

    CAS  Google Scholar 

  2. Huang SM, Harari PM . Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs 1999; 17: 259–269.

    Article  CAS  Google Scholar 

  3. Mitsudomi T, Yatabe Y . Epidermal growth factor receptor in relation to tumor development: EGFR gene and cancer. FEBS J 2010; 277: 301–308.

    Article  CAS  Google Scholar 

  4. Gschwind A, Fischer OM, Ullrich A . The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 2004; 4: 361–370.

    Article  CAS  Google Scholar 

  5. Hynes NE, Lane HA . ERBB Receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 2005; 5: 341–354.

    Article  CAS  Google Scholar 

  6. Castillo L, Etienne-Grimaldi MC, Fischel JL, Formento P, Magne N, Milano G . Pharmacological background of EGFR targeting. Ann Oncol 2004; 15: 1007–1012.

    Article  CAS  Google Scholar 

  7. Salomon DS, Brandt R, Ciardiello F, Normanno N . Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19: 183–232.

    Article  CAS  Google Scholar 

  8. Franovic A, Gunaratnam L, Smith K, Robert I, Patten D, Lee S . Translational up-regulation of the EGFR by tumor hypoxia provides a nonmutational explanation for its overexpression in human cancer. Proc Nat Acad Sci USA 2007; 104: 13092–13097.

    Article  CAS  Google Scholar 

  9. Laimer K, Spizzo G, Gastl G, Obrist P, Brunhuber T, Fong D et al. High EGFR expression predicts poor prognosis in patients with squamous cell carcinoma of the oral cavity and oropharynx: a TMA-based immunohistochemical analysis. Oral Oncol 2007; 43: 193–198.

    Article  CAS  Google Scholar 

  10. Olayioye MA, Neve RM, Lane HA, Hynes NE . The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19: 3159–3167.

    Article  CAS  Google Scholar 

  11. Harris RC, Chung E, Coffey RJ . EGF receptor ligands. Exp Cell Res 2003; 284: 2–13.

    Article  CAS  Google Scholar 

  12. Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell 2003; 12: 541–552.

    Article  CAS  Google Scholar 

  13. Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2000; 103: 211–225.

    Article  CAS  Google Scholar 

  14. Quesnelle KM, Boehm AL, Grandis JR . STAT-mediated EGFR signaling in cancer. J Cell Biochem 2007; 102: 311–319.

    Article  CAS  Google Scholar 

  15. Schlessinger J . Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 2004; 306: 1506–1507.

    Article  CAS  Google Scholar 

  16. Citri A, Yarden YEGF-ERBB . Signalling: towards the systems level. Nat Rev Mol Cell Biol 2006; 7: 505–516.

    Article  CAS  Google Scholar 

  17. Lurje G, Lenz HJ . EGFR signaling and drug discovery. Oncology. 2009; 77: 400–410.

    Article  CAS  Google Scholar 

  18. Blagosklonny MV, Darzynkiewicz Z . Why Iressa failed: toward novel use of kinase inhibitors (outlook). Cancer Biol Ther 2003; 2: 137–140.

    Article  CAS  Google Scholar 

  19. Twombly R . Failing survival advantage in crucial trial, future of Iressa is in jeopardy. J Natl Cancer Inst 2005; 97: 249–250.

    Article  Google Scholar 

  20. Dickler MN, Cobleigh MA, Miller KD, Klein PM, Winer EP . Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res Treat 2009; 115: 115–121.

    Article  CAS  Google Scholar 

  21. Gordon AN, Finkler N, Edwards RP, Garcia AA, Crozier M, Irwin DH et al. Efficacy and safety of erlotinib HCl, an epidermal growth factor receptor (HER1/EGFR) tyrosine kinase inhibitor, in patients with advanced ovarian carcinoma: results from a phase II multicenter study. Int J Gynecol Cancer 2005; 15: 785–792.

    Article  CAS  Google Scholar 

  22. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  Google Scholar 

  23. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 2006; 12: 6494–6501.

    Article  CAS  Google Scholar 

  24. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  Google Scholar 

  25. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005; 2: e73.

    Article  Google Scholar 

  26. Yoshida T, Zhang G, Haura EB . Targeting epidermal growth factor receptor. Central signaling kinase in lung cancer. Biochem Pharmacol 2010; 80: 613–623.

    Article  CAS  Google Scholar 

  27. Xu L, Nilsson MB, Saintigny P, Cascone T, Herynk MH, Du Z et al. Epidermal growth factor receptor regulates MET levels and invasiveness through hypoxia-inducible factor-1alpha in non-small cell lung cancer cells. Oncogene 2010; 29: 2616–2627.

    Article  CAS  Google Scholar 

  28. Zucali PA, Ruiz MG, Giovannetti E, Destro A, Varella-Garcia M, Floor K et al. Role of cMET expression in non-small-cell lung cancer patients treated with EGFR tyrosine kinase inhibitors. Ann Oncol 2008; 19: 1605–1612.

    Article  CAS  Google Scholar 

  29. Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Nat Acad Sci USA 2007; 104: 20932–20937.

    Article  CAS  Google Scholar 

  30. Chen HJ, Mok TS, Chen ZH, Guo AL, Zhang XC, Su J et al. Clinicopathologic and molecular features of epidermal growth factor receptor T790M mutation and c-MET amplification in tyrosine kinase inhibitor-resistant Chinese non-small cell lung cancer. Pathol Oncol Res 2009; 15: 651–658.

    Article  CAS  Google Scholar 

  31. Wang W, Li Q, Yamada T, Matsumoto K, Matsumoto I, Oda M et al. Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 2009; 15: 6630–6638.

    Article  CAS  Google Scholar 

  32. Kawaguchi K, Murakami H, Taniguchi T, Fujii M, Kawata S, Fukui T et al. Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells. Carcinogenesis 2009; 30: 1097–1105.

    Article  CAS  Google Scholar 

  33. Birchmeier C, Birchmeier W, Gherardi E, Vande WGF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  Google Scholar 

  34. Weinberger PM, Yu Z, Kowalski D, Joe J, Manger P, Psyrri A et al. Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Arch Otolaryngol Head Neck Surg 2005; 131: 707–711.

    Article  Google Scholar 

  35. Pai R, Nakamura T, Moon WS, Tarnawski AS . Prostaglandins promote colon cancer cell invasion; signaling by cross-talk between two distinct growth factor receptors. FASEB J 2003; 17: 1640–1647.

    Article  CAS  Google Scholar 

  36. Peghini PL, Iwamoto M, Raffeld M, Chen YJ, Goebel SU, Serrano J et al. Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin Cancer Res 2002; 8: 2273–2285.

    CAS  PubMed  Google Scholar 

  37. Wheeler DL, Huang S, Kruser TJ, Nechrebecki MM, Armstrong EA, Benavente S et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene 2008; 27: 3944–3956.

    Article  CAS  Google Scholar 

  38. Tlsty TD, Coussens LM . Tumor stroma and regulation of cancer development. Annu Rev Pathol 2006; 1: 119–150.

    Article  CAS  Google Scholar 

  39. Arteaga CL . Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 2002; 7 (Suppl 4): 31–39.

    Article  CAS  Google Scholar 

  40. Reznik TE, Sang Y, Ma Y, Abounader R, Rosen EM, Xia S et al. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor. Mol Cancer Res 2008; 6: 139–150.

    Article  CAS  Google Scholar 

  41. Spix JK, Chay EY, Block ER, Klarlund JK . Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor. Exp Cell Res 2007; 313: 3319–3325.

    Article  CAS  Google Scholar 

  42. Tice DA, Biscardi JS, Nickles AL, Parsons SJ . Mechanism of biological synergy between cellular Src and epidermal growth factor receptor. Proc Nat Acad Sci USA 1999; 96: 1415–1420.

    Article  CAS  Google Scholar 

  43. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.

    Article  CAS  Google Scholar 

  44. Timpson P, Wilson AS, Lehrbach GM, Sutherland RL, Musgrove EA, Daly RJ . Aberrant expression of cortactin in head and neck squamous cell carcinoma cells is associated with enhanced cell proliferation and resistance to the epidermal growth factor receptor inhibitor gefitinib. Cancer Res 2007; 67: 9304–9314.

    Article  CAS  Google Scholar 

  45. Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 2010; 17: 77–88.

    Article  CAS  Google Scholar 

  46. Yano S, Wang W, Li Q, Matsumoto K, Sakurama H, Nakamura T et al. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res 2008; 68: 9479–9487.

    Article  CAS  Google Scholar 

  47. McDermott U, Pusapati RV, Christensen JG, Gray NS, Settleman J . Acquired resistance of non-small cell lung cancer cells to MET kinase inhibition is mediated by a switch to epidermal growth factor receptor dependency. Cancer Res 2010; 70: 1625–1634.

    Article  CAS  Google Scholar 

  48. He Y, Wortmann A, Burke LJ, Reid JC, Adams MN, Abdul-Jabbar I et al. Proteolysis induced amino terminal ectodomain shedding of the integral membrane glycoprotein CUB domain containing protein 1 (CDCP1) is accompanied by tyrosine phosphorylation of its carboxy terminal domain and recruitment of Src and PKC{delta}. J Biol Chem 2010; 285: 26162–26173.

    Article  CAS  Google Scholar 

  49. Liu L, Greger J, Shi H, Liu Y, Greshock J, Annan R et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res 2009; 69: 6871–6878.

    Article  CAS  Google Scholar 

  50. Zhuang G, Brantley-Sieders DM, Vaught D, Yu J, Xie L, Wells S et al. Elevation of receptor tyrosine kinase EphA2 mediates resistance to trastuzumab therapy. Cancer Res 2010; 70: 299–308.

    Article  CAS  Google Scholar 

  51. Liu L, Siegmund A, Xi N, Kaplan-Lefko P, Rex K, Chen A et al. Discovery of a potent, selective, and orally bioavailable c-Met inhibitor: 1-(2-hydroxy-2-methylpropyl)-N-(5-(7-methoxyquinolin-4-yloxy)pyridin-2-yl)-5-meth yl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carboxamide (AMG 458). J Med Chem 2008; 51: 3688–3691.

    Article  CAS  Google Scholar 

  52. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402: 884–888.

    Article  CAS  Google Scholar 

  53. Sharma K, Weber C, Bairlein M, Greff Z, Keri G, Cox J et al. Proteomics strategy for quantitative protein interaction profiling in cell extracts. Nat Methods 2009; 6: 741–744.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Michaela Bairlein for technical advice in mass spectrometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ullrich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gusenbauer, S., Vlaicu, P. & Ullrich, A. HGF induces novel EGFR functions involved in resistance formation to tyrosine kinase inhibitors. Oncogene 32, 3846–3856 (2013). https://doi.org/10.1038/onc.2012.396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.396

Keywords

This article is cited by

Search

Quick links