Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rebamipide abolishes Helicobacter pylori CagA-induced phospholipase D1 expression via inhibition of NFκB and suppresses invasion of gastric cancer cells

Abstract

Infection with cagA-positive Helicobacter pylori is a risk factor for the development of severe gastritis and gastric cancer (GC). CagA protein is injected into gastric epithelial cells and deregulates a variety of cellular signaling molecules. Phospholipase D (PLD) is elevated in many different types of human cancers and has been implicated as a critical factor in inflammation and carcinogenesis. In this study, we show that infection with cagA-positive H. pylori in GC cells significantly induces PLD1 expression via CagA-dependent activation of nuclear factor κB (NFκB). Interestingly, the level of PLD1 protein and IκBα phosphorylation is aberrantly upregulated in H. pylori-infected human GC tissues. Infection with cagA-positive H. pylori and expression of CagA enhanced the binding of NFκB to the PLD1 promoter, and two functional NFκB-binding sites were identified within the PLD1 promoter. Rebamipide, a mucosal-protective antiulcer agent, abolished H. pylori cagA-induced PLD1 expression via inhibition of binding of NFκB to the PLD1 promoter, and also inhibited PLD activity. Moreover, rebamipide suppressed H. pylori-induced matrix metalloproteinase-9, interleukin-8 and activation-induced cytidine deaminase expression as well as invasion of GC cells through downregulation of PLD1. Our data suggest that H. pylori cagA targets PLD1 for invasion of GC cells, and rebamipide might contribute to the antitumorigenic effect of GC cells via inhibition of the H. pylori cagA-NFκB-PLD1 signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hatakeyama M . Linking epithelial polarity and carcinogenesis by multitasking Helicobacter pylori virulence factor CagA. Oncogene 2008; 27: 7047–7054.

    Article  CAS  Google Scholar 

  2. Hatakeyama M . Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 2004; 4: 688–694.

    Article  CAS  Google Scholar 

  3. Covacci A, Censini S, Bugnoli M, Petracca R, Burroni D, Macchia G et al. Molecular characterization of the 128-kDa immunodominant antigen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 1993; 90: 5791–5795.

    Article  CAS  Google Scholar 

  4. Blaser MJ, Perez-Perez GI, Kleanthous H . Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995; 55: 2111–2115.

    CAS  Google Scholar 

  5. Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH . Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 2003; 125: 1636–1644.

    Article  Google Scholar 

  6. Parsonnet J, Friedman GD, Orentreich N, Vogelman H . Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 1997; 40: 297–301.

    Article  CAS  Google Scholar 

  7. Foryst-Ludwig A, Naumann M . p21-activated kinase 1 activates the nuclear factor kappa B (NFκB)-inducing kinase-Ikappa B kinases NFκB pathway and proinflammatory cytokines in Helicobacter pylori infection. J Biol Chem 2000; 275: 39779–39785.

    Article  CAS  Google Scholar 

  8. Brandt S, Kwok T, Hartig R, Konig W, Backert S . NFκB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci USA 2005; 102: 9300–9305.

    Article  CAS  Google Scholar 

  9. Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M et al. Helicobacter pylori CagA activates NFκB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 2009; 10: 1242–1249.

    Article  CAS  Google Scholar 

  10. Shurmu SA, Tummuru MK, Miller GG, Bluser MJ . Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect Immun 1995; 63: 1681–1687.

    Google Scholar 

  11. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M . cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci USA 1996; 93: 14648–14653.

    Article  CAS  Google Scholar 

  12. Maeda S, Yoshida H, Ogura K, Mitsuno Y, Hirata Y, Yamaji Y et al. H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology 2000; 119: 97–108.

    Article  CAS  Google Scholar 

  13. Peek RM . Orchestration of aberrant epithelial signaling by Helicobacter pylori CagA. Sci STKE 2005. pe14.

    Article  Google Scholar 

  14. Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A . Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 2008; 105: 1003–1008.

    Article  CAS  Google Scholar 

  15. Su W, Chen Q, Frohman MA . Targeting phospholipase D with small molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 2009; 5: 1477–1486.

    Article  CAS  Google Scholar 

  16. Huang P, Frohman MA . The potential for phospholipase D as a new therapeutic target. Expert Opin Ther Targets 2007; 11: 707–716.

    Article  CAS  Google Scholar 

  17. Su W, Chen Q, Frohman MA . Targeting phospholipase D with small molecule inhibitors as a potential therapeutic approach for cancer metastasis. Future Oncol 2009; 5: 1477–1486.

    Article  CAS  Google Scholar 

  18. Kang DW, Park MH, Lee YJ, Kim HS, Kwon TK, Park WS et al. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFκB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 2008; 283: 4094–4104.

    Article  CAS  Google Scholar 

  19. Kang DW, Min G, Park do Y, Hong KW, Min DS . Rebamipide-induced downregulation of phospholipase D inhibits inflammation and proliferation in gastric cancer cells. Exp Mol Med 2010; 42: 555–564.

    Article  CAS  Google Scholar 

  20. Kang DW, Park MH, Lee YJ, Kim HS, Lindsley CW, Alex Brown H et al. Autoregulation of phospholipase D activity is coupled to selective induction of phospholipase D1 expression to promote invasion of breast cancer cells. Int J Cancer 2011; 128: 805–816.

    Article  CAS  Google Scholar 

  21. Arakawa T, Kobayashi K, Yoshikawa T, Tarnawski A . Rebamipide: overview of its mechanisms of action and efficacy in mucosal protection and ulcer healing. Dig Dis Sci 1998; 43: S5–S13.

    Google Scholar 

  22. Arakawa T, Higuchi K, Fujiwara Y, Watanabe T, Tominaga K, Sasaki E et al. 15th anniversary of rebamipide: looking ahead to the new mechanisms and new applications. Dig Dis Sci 2005; 50: S3–S11.

    Article  CAS  Google Scholar 

  23. Yoshida N, Yoshikawa T, Iinuma S, Arai M, Takenaka S, Sakamoto K et al. Rebamipide protects against activation of neutrophils by Helicobacter pylori. Dig Dis Sci 1996; 41: S1139–S1144.

    Article  Google Scholar 

  24. Tarnawski A, Pai R, Chiou SK, Chai J, Chu EC . Rebamipide inhibits gastric cancer growth by targeting survivin and Aurora-B. Biochem Biophys Res Commun 2005; 334: 207–212.

    Article  CAS  Google Scholar 

  25. Kishimoto S, Haruma K, Tari A, Sakurai K, Nakano M, Y Nakagawa . Rebamipide an antiulcer drug, prevents DSS-induced colitis formation in rats. Dig Dis Sci 2000; 45: S1608–S1616.

    Article  Google Scholar 

  26. Suzuki M, Mimuro H, Kiga K, Fukumatsu M, Ishijima N, Morikawa H et al. Helicobacter pylori CagA phosphorylation-independent function in epithelial proliferation and inflammation. Cell Host Microbe 2009; 5: 23–34.

    Article  CAS  Google Scholar 

  27. Kang DW, Min DS . Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFκB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett 2010; 294: 125–133.

    Article  CAS  Google Scholar 

  28. Sier CF, Kubben FJ, Ganesh S, Heerding MM, Griffioen G, Hanemaaijer R et al. Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to overall survival of patients with gastric carcinomas. Br J Cancer 1996; 74: 413–417.

    Article  CAS  Google Scholar 

  29. Zhang XY, Chan WY, Whitney BM, Fan DM, Chow JH, Liu Y et al. Changes of interleukin expression correlate with Helicobacter pylori infection and lymph node metastases in gastric carcinoma. Diagn Mol Pathol 2002; 11: 135–139.

    Article  Google Scholar 

  30. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, Frech DL, Quigley JP . Activation of matrix metalloproteinase 9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 1999; 274: 13066–13077.

    Article  CAS  Google Scholar 

  31. Mori N, Sato H, Hayashibara T, Senba M, Geleziunas R, Wada A et al. Helicobacter pylori induces matrix metalloproteinase-9 through activation of NFκB. Gastroenterology 2003; 124: 983–992.

    Article  CAS  Google Scholar 

  32. Matsumoto Y, Marusawa H, Kinoshita K, Endo Y, Kou T, Morisawa T et al. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. Nat Med 2007; 13: 470–476.

    Article  CAS  Google Scholar 

  33. Peek RM, Blaser MJ . Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002; 2: 28–37.

    Article  CAS  Google Scholar 

  34. Polk DB, Peek RM . Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010; 10: 403–414.

    Article  CAS  Google Scholar 

  35. Min DS, Kwon TK, Park WS, Chang JS, Park SK, Ahn BH et al. Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis 2001; 22: 1641–1647.

    Article  CAS  Google Scholar 

  36. Knoepp SM, Chahal MS, Xie Y, Zhang Z, Brauner DJ, Hallman MA et al. Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol 2008; 74: 574–584.

    Article  CAS  Google Scholar 

  37. Gozgit JM, Pentecost BT, Marconi SA, Ricketts-Loriaux RSJ, Otis CN, Arcaro KF . PLD1 is overexpressed in an ER-negative MCF-7 cell line variant and a subset of phospho-Akt-negative breast carcinomas. Br J Cancer 2007; 97: 809–817.

    Article  CAS  Google Scholar 

  38. Kang DW, Lee SH, Yoon JW, Park WS, Choi KY, Min DS . Phospholipase D1 drives a positive feedback loop to reinforce the Wnt/beta-catenin/TCF signaling axis. Cancer Res 2010; 70: 4233–4242.

    Article  CAS  Google Scholar 

  39. Kang DW, Min DS . Positive feedback regulation between phospholipase D and Wnt signaling promotes Wnt-driven anchorage-independent growth of colorectal cancer cells. PLoS ONE 2010; 5: e12109.

    Article  Google Scholar 

  40. Kang DW, Choi KY, Min DS, Phospholipase D . Meets Wnt signaling: a new target for cancer therapy. Cancer Res 2011; 71: 293–297.

    Article  CAS  Google Scholar 

  41. Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 2007; 26: 4617–4626.

    Article  CAS  Google Scholar 

  42. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002; 295: 683–686.

    Article  CAS  Google Scholar 

  43. Churin Y, Al-Ghoul L, Kepp O, Meyer TF, Birchmeier W, Naumann M et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the mitogenic response. J Cell Biol 2003; 161: 249–255.

    Article  CAS  Google Scholar 

  44. Wei J, Nagy TA, Vilgelm A, Zaika E, Ogden SR, Romero-Gallo J et al. Regulation of p53 tumor suppressor by Helicobacter pylori in gastric epithelial cells. Gastroenterology 2010; 139: 1333–1343.

    Article  CAS  Google Scholar 

  45. Buti L, Spooner E, Van der Veen AG, Rappuoli R, Covacci A, Ploegh HL . Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc Natl Acad Sci USA 2011; 108: 9238–9243.

    Article  CAS  Google Scholar 

  46. Shibata W, Hirata Y, Maeda S, Ogura K, Ohmae T, Yanai A et al. CagA protein secreted by the intact type IV secretion system leads to gastric epithelial inflammation in the Mongolian gerbil model. J Pathol 2006; 210: 306–314.

    Article  CAS  Google Scholar 

  47. Rieder G, Merchant JL, Haas R . Helicobacter pylori cag-type IV secretion system facilitates corpus colonization to induce precancerous conditions in Mongolian gerbils. Gastroenterology 2005; 128: 1229–1242.

    Article  CAS  Google Scholar 

  48. Arakawa T, Watanabe T, Fukuda T, Yamasaki K, Kobayashi K . Rebamipide novel prostaglandin-inducer accelerates healing and reduces relapse of acetic acid-induced rat gastric ulcer: comparison with cimetidine. Dig Dis Sci 1995; 40: 2469–2472.

    Article  CAS  Google Scholar 

  49. Yamane T, Nakatani H, Matsumoto H, Iwata Y, Kikuoka N, Takahashi T . Inhibitory effects of Rebamipide on ENNG induced duodenal carcinogenesis in mice: a possible strategy for chemoprevention of gastrointestinal cancers. Dig Dis Sci 1998; 43: S207–S211.

    Google Scholar 

  50. Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC et al. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. J Biol Chem 2006; 281: 34888–34896.

    Article  CAS  Google Scholar 

  51. Peek RM, Blaser MJ, Mays DJ, Forsyth MH, Cover TL, Song SY et al. Helicobacter pylori strain-specific genotypes and modulation of the gastric epithelial cell cycle. Cancer Res 1999; 59: 6124–6131.

    CAS  PubMed  Google Scholar 

  52. Rudi J, Kuck D, Strand S, von Herbay A, Mariani SM, Krammer PH et al. Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis. J Clin Invest 1998; 102: 1506–1514.

    Article  CAS  Google Scholar 

  53. Jones NL, Day AS, Jennings HA, Sherman PM . Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infect Immun 1999; 67: 4237–4242.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen G, Sordillo EM, Ramey WG, Reidy J, Holt PR, Krajewski S et al. Apoptosis in gastric epithelial cells is induced by Helicobacter pylori and accompanied by increased expression of BAK. Biochem Biophys Res Commun 1997; 239: 626–632.

    Article  CAS  Google Scholar 

  55. Snider JL, Cardelli JA . Helicobacter pylori induces cancer cell motility independent of the c-Met receptor. J Carcinog 2009; 8: 7.

    Article  Google Scholar 

  56. Wang H, Sun Y, Liu S, Yu H, Li W, Zeng J et al. Upregulation of progranulin by Helicobacter pylori in human gastric epithelial cells via p38MAPK and MEK1/2 signaling pathway: role in epithelial cell proliferation and migration. FEMS Immunol Med Microbiol 2011; 63: 82–92.

    Article  CAS  Google Scholar 

  57. Cover TL, Dooley CP, Blaser MJ . Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect Immun 1990; 58: 603–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C . Grb2 is a key mediator of Helicobacter pylori CagA protein activities. Mol Cell 2002; 10: 745–755.

    Article  CAS  Google Scholar 

  59. Dixon MF, Genta RM, Yardley JH, Correa P . Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 1996; 20: 1161–1181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Translational Research Center for Protein Function Control, NSF (2009-0092960), South Korea and a National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST; no. 2012002009) and by the National R&D program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea grant 0920050. We are most grateful to Dr DaiHyun Yu (Otsuka Pharmaceutical Co. Ltd. Otsuka International Asia Arab Division, Korea) for his helpful suggestions and generous comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Min.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, D., Hwang, W., Park, M. et al. Rebamipide abolishes Helicobacter pylori CagA-induced phospholipase D1 expression via inhibition of NFκB and suppresses invasion of gastric cancer cells. Oncogene 32, 3531–3542 (2013). https://doi.org/10.1038/onc.2012.358

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.358

Keywords

This article is cited by

Search

Quick links