Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic screen identifies genotype-specific promoter DNA methylation and oncogenic potential of CHRNB4

Abstract

Genome-wide association studies have highlighted three major lung cancer susceptibility regions at 15q25.1, 5p15.33 and 6p21.33. To gain insight into the possible mechanistic relevance of the genes in these regions, we investigated the regulation of candidate susceptibility gene expression by epigenetic alterations in healthy and lung tumor tissues. For genes up or downregulated in lung tumors, the influence of genetic variants on DNA methylation was investigated and in vitro studies were performed. We analyzed 394 CpG units within 19 CpG islands in the susceptibility regions in a screening set of 34 patients. Significant findings were validated in an independent patient set (n=50) with available DNA and RNA. The most consistent overall DNA methylation difference between tumor and adjacent normal tissue on 15q25 was tumor hypomethylation in the promoter region of CHRNB4 with a median difference of 8% (P<0.001), which resulted in overexpression of the transcript in tumors (P<0.001). Confirming previous studies, we also found hypermethylation in CHRNA3 and telomerase reverse transcriptase (TERT) with significant expression changes. Decitabine treatment of H1299 cells resulted in reduced methylation levels in gene promoters, elevated transcript levels of CHRNB4 and CHRNA3, and a slight downregulation of TERT demonstrating epigenetic regulation of lung cancer cells. Single-nucleotide polymorphisms rs421629 on 5p15.33 and rs1948, rs660652, rs8040868 and rs2036527 on 15q25.1, previously identified as lung cancer risk or nicotine-addiction modifiers, were associated with tumor DNA methylation levels in the promoters of TERT and CHRNB4 (P<0.001), respectively, in two independent sample sets (n=82; n=150). In addition, CHRNB4 knockdown in two different cell lines (A549 and H1299) resulted in reduced proliferation (PA549<0.05;PH1299<0.001) and propensity to form colonies in H1299 cells. These results suggest epigenetic deregulation of nicotinic acetylcholine receptor subunit (nAChR) genes which in the case of CHRNB4 is strongly associated with genetic lung cancer susceptibility variants and a functional impact on tumorigenic potential.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T et al. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1. Nat Genet 2008; 40: 616–622.

    Article  CAS  Google Scholar 

  2. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature 2008; 452: 633–637.

    Article  CAS  Google Scholar 

  3. Thorgeirsson TE, Geller F, Sulem P, Rafnar T, Wiste A, Magnusson KP et al. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature 2008; 452: 638–642.

    Article  CAS  Google Scholar 

  4. McKay JD, Hung RJ, Gaborieau V, Boffetta P, Chabrier A, Byrnes G et al. Lung cancer susceptibility locus at 5p15.33. Nat Genet 2008; 40: 1404–1406.

    Article  CAS  Google Scholar 

  5. Wang Y, Broderick P, Webb E, Wu X, Vijayakrishnan J, Matakidou A et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat Genet 2008; 40: 1407–1409.

    Article  CAS  Google Scholar 

  6. Freedman ML, Monteiro AN, Gayther SA, Coetzee GA, Risch A, Plass C et al. Principles for the post-GWAs functional characterization of cancer risk loci. Nat Genet 2011; 43: 513–518.

    Article  CAS  Google Scholar 

  7. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  Google Scholar 

  8. Coolen MW, Statham AL, Gardiner-Garden M, Clark SJ . Genomic profiling of CpG methylation and allelic specificity using quantitative high-throughput mass spectrometry: critical evaluation and improvements. Nucleic Acids Res 2007; 35: e119.

    Article  Google Scholar 

  9. Herman JG, Baylin SB . Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med 2003; 349: 2042–2054.

    Article  CAS  Google Scholar 

  10. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  Google Scholar 

  11. Dai Z, Lakshmanan RR, Zhu WG, Smiraglia DJ, Rush LJ, Fruhwald MC et al. Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia 2001; 3: 314–323.

    Article  CAS  Google Scholar 

  12. Shivapurkar N, Stastny V, Xie Y, Prinsen C, Frenkel E, Czerniak B et al. Differential methylation of a short CpG-rich sequence within exon 1 of TCF21 gene: a promising cancer biomarker assay. Cancer Epidemiol Biomarkers Prev 2008; 17: 995–1000.

    Article  CAS  Google Scholar 

  13. Belinsky SA, Nikula KJ, Palmisano WA, Michels R, Saccomanno G, Gabrielson E et al. Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci USA 1998; 95: 11891–11896.

    Article  CAS  Google Scholar 

  14. Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 2006; 66: 3338–3344.

    Article  CAS  Google Scholar 

  15. Brena RM, Morrison C, Liyanarachchi S, Jarjoura D, Davuluri RV, Otterson GA et al. Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer. PLoS Med 2007; 4: e108.

    Article  Google Scholar 

  16. Brena RM, Costello JF . Genome-epigenome interactions in cancer. Hum Mol Genet 2007; 1: R96–R105 16 Spec No.

    Article  Google Scholar 

  17. Esteller M, Garcia A, Martinez Palones JM, Xercavins J, Reventos J . Germ line polymorphisms in cytochrome-P450 1A1 (C4887 CYP1A1) and methylenetetrahydrofolate reductase (MTHFR) genes and endometrial cancer susceptibility. Carcinogenesis 1997; 18: 2307–2311.

    Article  CAS  Google Scholar 

  18. Shames DS, Girard L, Gao B, Sato M, Lewis CM, Shivapurkar N et al. A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 2006; 3: e486.

    Article  Google Scholar 

  19. Laird PW . Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 2010; 11: 191–203.

    Article  CAS  Google Scholar 

  20. Park JC, Chae YK, Son CH, Kim MS, Lee J, Ostrow K et al. Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochem Biophys Res Commun 2008; 365: 221–226.

    Article  CAS  Google Scholar 

  21. Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJ, Khachigian LM et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell 2011; 20: 200–213.

    Article  CAS  Google Scholar 

  22. Paliwal A, Vaissiere T, Krais A, Cuenin C, Cros MP, Zaridze D et al. Aberrant DNA methylation links cancer susceptibility locus 15q25.1 to apoptotic regulation and lung cancer. Cancer Res 2010; 70: 2779–2788.

    Article  CAS  Google Scholar 

  23. Renaud S, Loukinov D, Abdullaev Z, Guilleret I, Bosman FT, Lobanenkov V et al. Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 2007; 35: 1245–1256.

    Article  CAS  Google Scholar 

  24. Schalkwyk LC, Meaburn EL, Smith R, Dempster EL, Jeffries AR, Davies MN et al. Allelic skewing of DNA methylation is widespread across the genome. Am J Hum Genet 2010; 86: 196–212.

    Article  CAS  Google Scholar 

  25. Kerkel K, Spadola A, Yuan E, Kosek J, Jiang L, Hod E et al. Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nat Genet 2008; 40: 904–908.

    Article  CAS  Google Scholar 

  26. Zhang Y, Rohde C, Reinhardt R, Voelcker-Rehage C, Jeltsch A . Non-imprinted allele-specific DNA methylation on human autosomes. Genome Biol 2009; 10: R138.

    Article  Google Scholar 

  27. Amos CI, Gorlov IP, Dong Q, Wu X, Zhang H, Lu EY et al. Nicotinic acetylcholine receptor region on chromosome 15q25 and lung cancer risk among African Americans: a case-control study. J Natl Cancer Inst 2011; 102: 1199–1205.

    Article  Google Scholar 

  28. Schlaepfer IR, Hoft NR, Collins AC, Corley RP, Hewitt JK, Hopfer CJ et al. The CHRNA5/A3/B4 gene cluster variability as an important determinant of early alcohol and tobacco initiation in young adults. Biol Psychiatry 2008; 63: 1039–1046.

    Article  CAS  Google Scholar 

  29. Stephens SH, Hoft NR, Schlaepfer IR, Young SE, Corley RC, McQueen MB et al. Externalizing behaviors are associated with SNPs in the CHRNA5/CHRNA3/CHRNB4 gene cluster. Behav Genet 2011; 42: 402–414.

    Article  Google Scholar 

  30. Erlich PM, Hoffman SN, Rukstalis M, Han JJ, Chu X, Linda Kao WH et al. Nicotinic acetylcholine receptor genes on chromosome 15q25.1 are associated with nicotine and opioid dependence severity. Hum Genet 2010; 128: 491–499.

    Article  CAS  Google Scholar 

  31. Improgo MR, Schlichting NA, Cortes RY, Zhao-Shea R, Tapper AR, Gardner PD . ASCL1 regulates the expression of the CHRNA5/A3/B4 lung cancer susceptibility locus. Mol Cancer Res 8: 194–203.

    Article  CAS  Google Scholar 

  32. Jones PA . The DNA methylation paradox. Trends Genet 1999; 15: 34–37.

    Article  CAS  Google Scholar 

  33. Allemand E, Batsche E, Muchardt C . Splicing, transcription, and chromatin: a menage a trois. Curr Opin Genet Dev 2008; 18: 145–151.

    Article  CAS  Google Scholar 

  34. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T . Regulation of alternative splicing by histone modifications. Science 2010; 327: 996–1000.

    Article  CAS  Google Scholar 

  35. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y et al. Relationship between nucleosome positioning and DNA methylation. Nature 2010; 466: 388–392.

    Article  CAS  Google Scholar 

  36. McCabe MT, Lee EK, Vertino PM . A multifactorial signature of DNA sequence and polycomb binding predicts aberrant CpG island methylation. Cancer Res 2009; 69: 282–291.

    Article  CAS  Google Scholar 

  37. Gebhard C, Benner C, Ehrich M, Schwarzfischer L, Schilling E, Klug M et al. General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res 2010; 70: 1398–1407.

    CAS  PubMed  Google Scholar 

  38. Herceg Z . Epigenetic information in chromatin and cancer. Eur J Cancer 2009; 45: 442–444.

    Article  Google Scholar 

  39. Chen SS, Raval A, Johnson AJ, Hertlein E, Liu TH, Jin VX et al. Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2009; 106: 13433–13438.

    Article  CAS  Google Scholar 

  40. Van den Berg RM, Brokx H, Vesin A, Field JK, Brambilla C, Meijer CJ et al. Prognostic value of hTERT mRNA expression in surgical samples of lung cancer patients: the European Early Lung Cancer Project. Int J Oncol 2010; 37: 455–461.

    CAS  PubMed  Google Scholar 

  41. Schuller HM . Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat Rev Cancer 2009; 9: 195–205.

    Article  CAS  Google Scholar 

  42. Schuller HM, Tithof PK, Williams M, Plummer H . The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone is a beta-adrenergic agonist and stimulates DNA synthesis in lung adenocarcinoma via beta-adrenergic receptor-mediated release of arachidonic acid. Cancer Res 1999; 59: 4510–4515.

    CAS  PubMed  Google Scholar 

  43. Kawai H, Berg DK . Nicotinic acetylcholine receptors containing alpha 7 subunits on rat cortical neurons do not undergo long-lasting inactivation even when up-regulated by chronic nicotine exposure. J Neurochem 2001; 78: 1367–1378.

    Article  CAS  Google Scholar 

  44. Joseph J, Niggemann B, Zaenker KS, Entschladen F . The neurotransmitter gamma-aminobutyric acid is an inhibitory regulator for the migration of SW 480 colon carcinoma cells. Cancer Res 2002; 62: 6467–6469.

    CAS  PubMed  Google Scholar 

  45. Shiraishi K, Kohno T, Kunitoh H, Watanabe S, Goto K, Nishiwaki Y et al. Contribution of nicotine acetylcholine receptor polymorphisms to lung cancer risk in a smoking-independent manner in the Japanese. Carcinogenesis 2009; 30: 65–70.

    Article  CAS  Google Scholar 

  46. Liu Y, Liu P, Wen W, James MA, Wang Y, Bailey-Wilson JE et al. Haplotype and cell proliferation analyses of candidate lung cancer susceptibility genes on chromosome 15q24-25.1. Cancer Res 2009; 69: 7844–7850.

    Article  CAS  Google Scholar 

  47. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 2005; 102: 15785–15790.

    Article  CAS  Google Scholar 

  48. Oeth P, del Mistro G, Marnellos G, Shi T, van den Boom D . Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassARRAY). Methods Mol Biol 2009; 578: 307–343.

    Article  CAS  Google Scholar 

  49. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Frau Heinzmann-Groth, Birgit Jäger and all other members of the clinical and laboratory teams for help with sample and/or data collection and archiving for the Heidelberg lung study. We are grateful to all patients at the Thoraxklinik Heidelberg, who participated in the study. We thank Ruprecht Kuner for the cell lines, Oliver Mücke for competent technical assistance, Chris Amos for helpful comments on the manuscript and the members of the Plass Laboratory for thoughtful discussions. The scientific development and funding of this project were in part supported by the Genetic Associations and Mechanisms in Oncology (GAME-ON): a NCI Cancer Post-GWAS Initiative. This work was in part supported by the National Institute of Health (USA; grant number CA148127) and earlier sample collection by the Deutsche Krebshilfe (grant number 70–2387). JLB was in part supported by a grant of the Deutsche Forschungsgemeinschaft (DFG, SFB/TRR77, project Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Risch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherf, D., Sarkisyan, N., Jacobsson, H. et al. Epigenetic screen identifies genotype-specific promoter DNA methylation and oncogenic potential of CHRNB4. Oncogene 32, 3329–3338 (2013). https://doi.org/10.1038/onc.2012.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.344

Keywords

This article is cited by

Search

Quick links