Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 isoform profiling in glioblastoma and injured brain

Abstract

The tumor suppressor p53 has been found to be the most commonly mutated gene in human cancers; however, the frequency of p53 mutations varies from 10 to 70% across different cancer types. This variability can partly be explained by inactivating mechanisms aside from direct genomic polymorphisms. The p53 gene encodes 12 isoforms, some of which can modulate full-length p53 activity in cancer. In this study, we characterized p53 isoform expression patterns in glioblastoma, gliosis, non-tumor brain and neural progenitor cells by SDS–PAGE, immunoblot, mass spectrometry and reverse transcription–PCR. We found that the most consistently expressed isoform in glioblastoma, Δ40p53, was uniquely expressed in regenerative processes, such as those involving neural progenitor cells and gliosis compared with tumor samples. Isoform profiling of glioblastoma tissues revealed the presence of both Δ40p53 and full-length p53, neither of which were detected in non-tumor cerebral cortex. Upon xenograft propagation of tumors, p53 levels increased. The variability of overall p53 expression and relative levels of isoforms suggest fluctuations in subpopulations of cells with greater or lesser capacity for proliferation, which can change as the tumor evolves under different growth conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Machado-Silva A, Perrier S, Bourdon JC . p53 family members in cancer diagnosis and treatment. Semin Cancer Biol 2010; 20: 57–62.

    Article  CAS  PubMed  Google Scholar 

  2. Robles AI, Harris CC . Clinical outcomes and correlates of TP53 mutations and cancer. Cold Spring Harb Perspect Biol 2010; 2: a001016.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hollstein M, Sidransky D, Vogelstein B, Harris CC . p53 mutations in human cancers. Science 1991; 253: 49–53.

    Article  CAS  PubMed  Google Scholar 

  4. Levine AJ, Momand J, Finlay CA . The p53 tumour suppressor gene. Nature 1991; 351: 453–456.

    Article  CAS  PubMed  Google Scholar 

  5. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P et al. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 2007; 28: 622–629.

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  7. Butler T, Gribben JG . Biologic and clinical significance of molecular profiling in chronic lymphocytic leukemia. Blood Rev 2010; 24: 135–141.

    Article  CAS  PubMed  Google Scholar 

  8. Li W, Sanki A, Karim RZ, Thompson JF, Soon Lee C, Zhuang L et al. The role of cell cycle regulatory proteins in the pathogenesis of melanoma. Pathology 2006; 38: 287–301.

    Article  CAS  PubMed  Google Scholar 

  9. Soussi T . The TP53 web site. Paris 2010 [updated July 2010; cited 2011 September 10]; Available from http://p53.free.fr/Database/p53_cancer_db.html.

  10. Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE et al. Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 1994; 54: 649–652.

    CAS  PubMed  Google Scholar 

  11. Anensen N, Oyan AM, Bourdon JC, Kalland KH, Bruserud O, Gjertsen BT . A distinct p53 protein isoform signature reflects the onset of induction chemotherapy for acute myeloid leukemia. Clin Cancer Res 2006; 12: 3985–3992.

    Article  CAS  PubMed  Google Scholar 

  12. Avery-Kiejda KA, Zhang XD, Adams LJ, Scott RJ, Vojtesek B, Lane DP et al. Small molecular weight variants of p53 are expressed in human melanoma cells and are induced by the DNA-damaging agent cisplatin. Clin Cancer Res 2008; 14: 1659–1668.

    Article  CAS  PubMed  Google Scholar 

  13. Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K . Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 2007; 43: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcel V, Perrier S, Aoubala M, Ageorges S, Groves MJ, Diot A et al. Delta160p53 is a novel N-terminal p53 isoform encoded by Delta133p53 transcript. FEBS Lett 2010; 584: 4463–4468.

    Article  CAS  PubMed  Google Scholar 

  16. Ungewitter E, Scrable H . Delta40p53 controls the switch from pluripotency to differentiation by regulating IGF signaling in ESCs. Genes Dev 2010; 24: 2408–2419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghosh A, Stewart D, Matlashewski G . Regulation of human p53 activity and cell localization by alternative splicing. Mol Cell Biol 2004; 24: 7987–7997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U et al. DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 2002; 21: 6722–6728.

    Article  CAS  PubMed  Google Scholar 

  19. Philipova T, Baryawno N, Hartmann W, Pietsch T, Druid H, Johnsen JI et al. Differential forms of p53 in medulloblastoma primary tumors, cell lines and xenografts. Int J Oncol 2011; 38: 843–849.

    CAS  PubMed  Google Scholar 

  20. Khoury MP, Bourdon JC . The isoforms of the p53 protein. Cold Spring Harb Perspect Biol 2010; 2: a000927.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mills AA . p53: link to the past, bridge to the future. Genes Dev 2005; 19: 2091–2099.

    Article  CAS  PubMed  Google Scholar 

  22. Rovinski B, Munroe D, Peacock J, Mowat M, Bernstein A, Benchimol S . Deletion of 5′-coding sequences of the cellular p53 gene in mouse erythroleukemia: a novel mechanism of oncogene regulation. Mol Cell Biol 1987; 7: 847–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin Y, Stephen CW, Luciani MG, Fahraeus R . p53 Stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 2002; 4: 462–467.

    Article  CAS  PubMed  Google Scholar 

  24. Ray PS, Grover R, Das S . Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 2006; 7: 404–410.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Grover R, Candeias MM, Fahraeus R, Das S . p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 2009; 28: 2766–2772.

    Article  CAS  PubMed  Google Scholar 

  26. Matlashewski G, Pim D, Banks L, Crawford L . Alternative splicing of human p53 transcripts. Oncogene Res 1987; 1: 77–85.

    CAS  PubMed  Google Scholar 

  27. Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B et al. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 2006; 25: 6936–6947.

    Article  CAS  PubMed  Google Scholar 

  28. Boldrup L, Bourdon JC, Coates PJ, Sjostrom B, Nylander K . Expression of p53 isoforms in squamous cell carcinoma of the head and neck. Eur J Cancer 2007; 43: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  30. Kleihues P, Burger PC, Scheithauer BW . The new WHO classification of brain tumours. Brain Pathol 1993; 3: 255–268.

    Article  CAS  PubMed  Google Scholar 

  31. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  32. Sanai N, Alvarez-Buylla A, Berger MS . Neural stem cells and the origin of gliomas. N Engl J Med 2005; 353: 811–822.

    Article  CAS  PubMed  Google Scholar 

  33. Globus J, Kulenbeck H . Tumors of the striatothalamic and related regions: their probable source of origin and more common forms. Arch Pathol 1942; 24: 674–734.

    Google Scholar 

  34. Globus J, Kuhlenbeck H . The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 1944; 3: 1–35.

    Article  Google Scholar 

  35. Shoshan Y, Nishiyama A, Chang A, Mork S, Barnett GH, Cowell JK et al. Expression of oligodendrocyte progenitor cell antigens by gliomas: implications for the histogenesis of brain tumors. Proc Natl Acad Sci USA 1999; 96: 10361–10366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A . EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 2002; 36: 1021–1034.

    Article  CAS  PubMed  Google Scholar 

  37. Palmer TD, Willhoite AR, Gage FH . Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000; 425: 479–494.

    Article  CAS  PubMed  Google Scholar 

  38. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leonard BW, Mastroeni D, Grover A, Liu Q, Yang K, Gao M et al. Subventricular zone neural progenitors from rapid brain autopsies of elderly subjects with and without neurodegenerative disease. J Comp Neurol 2009; 515: 269–294.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Medrano S, Burns-Cusato M, Atienza MB, Rahimi D, Scrable H . Regenerative capacity of neural precursors in the adult mammalian brain is under the control of p53. Neurobiol Aging 2009; 30: 483–497.

    Article  CAS  PubMed  Google Scholar 

  41. Lendahl U, Zimmerman LB, McKay RD . CNS stem cells express a new class of intermediate filament protein. Cell 1990; 60: 585–595.

    Article  CAS  PubMed  Google Scholar 

  42. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A . Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999; 97: 703–716.

    Article  CAS  PubMed  Google Scholar 

  43. Laywell ED, Kukekov VG, Steindler DA . Multipotent neurospheres can be derived from forebrain subependymal zone and spinal cord of adult mice after protracted postmortem intervals. Exp Neurol 1999; 156: 430–433.

    Article  CAS  PubMed  Google Scholar 

  44. Imura T, Kornblum HI, Sofroniew MV . The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 2003; 23: 2824–2832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Imura T, Nakano I, Kornblum HI, Sofroniew MV . Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 2006; 53: 277–293.

    Article  PubMed  Google Scholar 

  46. Garcia AD, Doan NB, Imura T, Bush TG, Sofroniew MV . GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 2004; 7: 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  47. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A . Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997; 17: 5046–5061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reynolds BA, Tetzlaff W, Weiss S . A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 1992; 12: 4565–4574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reynolds BA, Weiss S . Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 1992; 255: 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  50. Reynolds BA, Weiss S . Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175: 1–13.

    Article  CAS  PubMed  Google Scholar 

  51. Gard AL, Pfeiffer SE . Two proliferative stages of the oligodendrocyte lineage (A2B5+O4− and O4+GalC−) under different mitogenic control. Neuron 1990; 5: 615–625.

    Article  CAS  PubMed  Google Scholar 

  52. Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn AP et al. Origin and progeny of reactive gliosis: a source of multipotent cells in the injured brain. Proc Natl Acad Sci USA 2008; 105: 3581–3586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lang B, Liu HL, Liu R, Feng GD, Jiao XY, Ju G . Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience 2004; 128: 775–783.

    Article  CAS  PubMed  Google Scholar 

  54. Petitjean A, Achatz MI, Borresen-Dale AL, Hainaut P, Olivier M . TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 2007; 26: 2157–2165.

    Article  CAS  PubMed  Google Scholar 

  55. Oren M, Rotter V . Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2010; 2: a001107.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Goh AM, Coffill CR, Lane DP . The role of mutant p53 in human cancer. J Pathol 2011; 223: 116–126.

    Article  CAS  PubMed  Google Scholar 

  57. Sasaki T, Maier B, Bartke A, Scrable H . Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 2006; 5: 413–422.

    Article  CAS  PubMed  Google Scholar 

  58. Carlson BL, Pokorny JL, Schroeder MA, Sarkaria JN . Establishment, maintenance and in vitro and in vivo applications of primary human glioblastoma multiforme (GBM) xenograft models for translational biology studies and drug discovery. Curr Protoc Pharmacol 2011; 52: 1–14.

    PubMed Central  Google Scholar 

  59. Murray-Zmijewski F, Lane DP, Bourdon JC . p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 2006; 13: 962–972.

    Article  CAS  PubMed  Google Scholar 

  60. Ishii N, Maier D, Merlo A, Tada M, Sawamura Y, Diserens AC et al. Frequent co-alterations of TP53, p16/CDKN2A, p14ARF, PTEN tumor suppressor genes in human glioma cell lines. Brain Pathol 1999; 9: 469–479.

    Article  CAS  PubMed  Google Scholar 

  61. Gritti A, Galli R, Vescovi A . Protocols for Neural Cell Culture 3rd edn. Fedoroff S, Richardson A, (eds). Humana Press, Inc, Totowa, 2001.

    Google Scholar 

Download references

Acknowledgements

We would like to thank our Mayo Clinic colleagues for their contributions, in particular, Dr Robert Jenkins for seminal discussions on the etiology of GBM and xenograft biology; Alissa Caron for preparing GBM patient tumor specimens; Dr John Black for CTX samples; Guido Gonzalez for obtaining LNZ308 cells; and Benjamin Madden and the Mayo Clinic Protein Chemistry and Proteomics Shared Resource core for mass spectrometry analysis. We are grateful to past and current members of the Scrable lab for their enduring enthusiasm and abilities, in particular Dr Erica Ungewitter for her invaluable help with p53 antibodies and the work she did as a graduate student that laid the foundation for subsequent studies on p53 in ESCs, and Dr Silvia Medrano, for passing on her expertise with mouse NSC culture and the role of p53 in adult stem cells. This work was supported by PHS award R01AG026094 and a Senior Scholar in Aging award from the Ellison Medical Research Foundation to HS Additional support came from an NCI Cancer Center support grant to the Mayo Clinic Cancer Center, the Robert and Arlene Kogod Center on Aging at Mayo Clinic, the Mayo Brain Tumors SPORE, and the Mayo Clinic Medical Scientist Training Program (RT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Scrable.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, R., Giannini, C., Sarkaria, J. et al. p53 isoform profiling in glioblastoma and injured brain. Oncogene 32, 3165–3174 (2013). https://doi.org/10.1038/onc.2012.322

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.322

Keywords

This article is cited by

Search

Quick links