Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs

Abstract

MicroRNAs (miRNAs) contribute to the pathogenesis of many forms of cancer, including the pediatric cancer neuroblastoma, but the underlying mechanisms leading to altered miRNA expression are often unknown. Here, a novel integrated approach for analyzing DNA methylation coupled with miRNA and mRNA expression data sets identified 67 epigenetically regulated miRNA in neuroblastoma. A large proportion (42%) of these miRNAs was associated with poor patient survival when underexpressed in tumors. Moreover, we demonstrate that this panel of epigenetically silenced miRNAs targets a large set of genes that are overexpressed in tumors from patients with poor survival in a highly redundant manner. The genes targeted by the epigenetically regulated miRNAs are enriched for a number of biological processes, including regulation of cell differentiation. Functional studies involving ectopic overexpression of several of the epigenetically silenced miRNAs had a negative impact on neuroblastoma cell viability, providing further support to the concept that inactivation of these miRNAs is important for neuroblastoma disease pathogenesis. One locus, miR-340, induced either differentiation or apoptosis in a cell context dependent manner, indicating a tumor suppressive function for this miRNA. Intriguingly, it was determined that miR-340 is upregulated by demethylation of an upstream genomic region that occurs during the process of neuroblastoma cell differentiation induced by all-trans retinoic acid (ATRA). Further biological studies of miR-340 revealed that it directly represses the SOX2 transcription factor by targeting of its 3′-untranslated region, explaining the mechanism by which SOX2 is downregulated by ATRA. Although SOX2 contributes to the maintenance of stem cells in an undifferentiated state, we demonstrate that miR-340-mediated downregulation of SOX2 is not required for ATRA induced differentiation to occur. In summary, our results exemplify the dynamic nature of the miRNA epigenome and identify a remarkable network of miRNA/mRNA interactions that significantly contribute to neuroblastoma disease pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. He L, Hannon GJ . MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522–531.

    Article  CAS  Google Scholar 

  2. Stallings RL, Foley NH, Bryan K, Buckley PG, Bray I . Therapeutic targeting of miRNAs in neuroblastoma. Expert Opin Ther Targets 2010; 14: 951–962.

    Article  CAS  Google Scholar 

  3. Stallings RL, Foley NH, Bray IM, Das S, Buckley PG . MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol 2011.

  4. Bray I, Tivnan A, Bryan K, Foley NH, Watters KM, Tracey L et al. MicroRNA-542-5p as a novel tumor suppressor in neuroblastoma. Cancer Lett 2011; 303: 56–64.

    Article  CAS  Google Scholar 

  5. Chen Y, Stallings RL . Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007; 67: 976–983.

    Article  CAS  Google Scholar 

  6. Das S, Foley N, Bryan K, Watters KM, Bray I, Murphy DM et al. MicroRNA mediates DNA demethylation events triggered by retinoic acid during neuroblastoma cell differentiation. Cancer Res 2010; 70: 7874–7881.

    Article  CAS  Google Scholar 

  7. Foley NH, Bray I, Watters KM, Das S, Bryan K, Bernas T et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 2011; 18: 1089–1098.

    Article  CAS  Google Scholar 

  8. Foley NH, Bray IM, Tivnan A, Bryan K, Murphy DM, Buckley PG et al. MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 2010; 9: 83.

    Article  Google Scholar 

  9. Fontana L, Fiori ME, Albini S, Cifaldi L, Giovinazzi S, Forloni M et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 2008; 3: e2236.

    Article  Google Scholar 

  10. Mestdagh P, Bostrom AK, Impens F, Fredlund E, Van Peer G, De Antonellis P et al. The miR-17-92 microRNA cluster regulates multiple components of the TGF-beta pathway in neuroblastoma. Mol Cell 2011; 40: 762–773.

    Article  Google Scholar 

  11. Tivnan A, Foley NH, Tracey L, Davidoff AM, Stallings RL . MicroRNA-184-mediated inhibition of tumour growth in an orthotopic murine model of neuroblastoma. Anticancer Res 2011; 30: 4391–4395.

    Google Scholar 

  12. Welch C, Chen Y, Stallings RL . MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26: 5017–5022.

    Article  CAS  Google Scholar 

  13. Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 2009; 4: e7850.

    Article  Google Scholar 

  14. Buckley PG, Alcock L, Bryan K, Bray I, Schulte JH, Schramm A et al. Chromosomal and microRNA expression patterns reveal biologically distinct subgroups of 11q- neuroblastoma. Clin Cancer Res 2010; 16: 2971–2978.

    Article  CAS  Google Scholar 

  15. Mestdagh P, Fredlund E, Pattyn F, Schulte JH, Muth D, Vermeulen J et al. MYCN/c-MYC-induced microRNAs repress coding gene networks associated with poor outcome in MYCN/c-MYC-activated tumors. Oncogene 2010; 29: 1394–1404.

    Article  CAS  Google Scholar 

  16. Schulte JH, Schowe B, Mestdagh P, Kaderali L, Kalaghatgi P, Schlierf S et al. Accurate prediction of neuroblastoma outcome based on miRNA expression profiles. Int J Cancer 2010; 127: 2374–2385.

    Article  CAS  Google Scholar 

  17. Buckley PG, Das S, Bryan K, Watters KM, Alcock L, Koster J et al. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions. Int J Cancer 2010; 128: 2296–2305.

    Article  Google Scholar 

  18. Decock A, Ongenaert M, Vandesompele J, Speleman F . Neuroblastoma epigenetics: from candidate gene approaches to genome-wide screenings. Epigenetics 2011; 6: 962–970.

    Article  CAS  Google Scholar 

  19. Hoebeeck J, Michels E, Pattyn F, Combaret V, Vermeulen J, Yigit N et al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma. Cancer Lett 2009; 273: 336–346.

    Article  CAS  Google Scholar 

  20. Yang Q, Kiernan CM, Tian Y, Salwen HR, Chlenski A, Brumback BA et al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clin Cancer Res 2007; 13: 3191–3197.

    Article  CAS  Google Scholar 

  21. Yang Q, Liu S, Tian Y, Hasan C, Kersey D, Salwen HR et al. Methylation-associated silencing of the heat shock protein 47 gene in human neuroblastoma. Cancer Res 2004; 64: 4531–4538.

    Article  CAS  Google Scholar 

  22. Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG et al. Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 2010; 31: 745–750.

    Article  CAS  Google Scholar 

  23. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H et al. Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 2008; 7: 2591–2600.

    Article  CAS  Google Scholar 

  24. Lopez-Serra P, Esteller M . DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 2011.

  25. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J et al. Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 2011; 458: 313–322.

    Article  Google Scholar 

  26. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA . Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 2011; 717: 77–84.

    Article  CAS  Google Scholar 

  27. Sidell N . Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 1982; 68: 589–596.

    CAS  PubMed  Google Scholar 

  28. Saini HK, Griffiths-Jones S, Enright AJ . Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA 2007; 104: 17719–17724.

    Article  CAS  Google Scholar 

  29. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV . Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 2009; 4: e5279.

    Article  Google Scholar 

  30. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S et al. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 2008; 134: 521–533.

    Article  CAS  Google Scholar 

  31. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG et al. Chromatin structure analyses identify miRNA promoters. Genes & development 2008; 22: 3172–3183.

    Article  CAS  Google Scholar 

  32. Fujita S, Iba H . Putative promoter regions of miRNA genes involved in evolutionarily conserved regulatory systems among vertebrates. Bioinformatics 2008; 24: 303–308.

    Article  CAS  Google Scholar 

  33. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 2009; 41: 178–186.

    Article  CAS  Google Scholar 

  34. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331–5341.

    Article  CAS  Google Scholar 

  35. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  Google Scholar 

  36. Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, Zhuang SM . MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology 2009; 50: 113–121.

    Article  CAS  Google Scholar 

  37. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115: 2630–2639.

    Article  CAS  Google Scholar 

  38. Girgert R, Schweizer P . Regulation of expression of two different transcripts of the NF-1 gene in neuroblastoma. J neuro-oncol 1997; 31: 93–97.

    Article  CAS  Google Scholar 

  39. Gomez-Mateo Mdel C, Piqueras M, Pahlman S, Noguera R, Navarro S . Prognostic value of SOX2 expression in neuroblastoma. Genes Chromosomes Cancer 2011; 50: 374–377.

    Article  Google Scholar 

  40. Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M et al. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 2010; 17: 1287–1296.

    Article  Google Scholar 

  41. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  Google Scholar 

  42. Saetrom P, Heale BS, Snove O, Aagaard L, Alluin J, Rossi JJ . Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res 2007; 35: 2333–2342.

    Article  CAS  Google Scholar 

  43. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  Google Scholar 

  44. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    Article  CAS  Google Scholar 

  45. Buechner J, Tomte E, Haug BH, Henriksen JR, Lokke C, Flaegstad T et al. Tumour-suppressor microRNAs let-7 and mir-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 2011; 105: 296–303.

    Article  CAS  Google Scholar 

  46. Lynch J, Fay J, Meehan M, Bryan K, Watters KM, Murphy DM et al. MiRNA-335 suppresses neuroblastoma cell invasiveness by direct targeting of multiple genes from the non-canonical TGF-beta signalling pathway. Carcinogenesis 2012; 33: 976–985.

    Article  CAS  Google Scholar 

  47. Viswanathan SR, Powers JT, Einhorn W, Hoshida Y, Ng TL, Toffanin S et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 2009; 41: 843–848.

    Article  CAS  Google Scholar 

  48. Wang YC, Chen YL, Yuan RH, Pan HW, Yang WC, Hsu HC et al. Lin-28B expression promotes transformation and invasion in human hepatocellular carcinoma. Carcinogenesis 2010; 31: 1516–1522.

    Article  CAS  Google Scholar 

  49. Jankowski MP, Cornuet PK, McIlwrath S, Koerber HR, Albers KM . SRY-box containing gene 11 (Sox11) transcription factor is required for neuron survival and neurite growth. Neuroscience 2006; 143: 501–514.

    Article  CAS  Google Scholar 

  50. Stevanovic M . Modulation of SOX2 and SOX3 gene expression during differentiation of human neuronal precursor cell line NTERA2. Mol Biol Rep 2003; 30: 127–132.

    Article  CAS  Google Scholar 

  51. Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009; 27: 40–48.

    Article  CAS  Google Scholar 

  52. Patel M, Yang S . Advances in reprogramming somatic cells to induced pluripotent stem cells. Stem Cell Rev 2010; 6: 367–380.

    Article  CAS  Google Scholar 

  53. Wu ZS, Wu Q, Wang CQ, Wang XN, Huang J, Zhao JJ et al. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer 2011; 117: 2842–2852.

    Article  CAS  Google Scholar 

  54. Murphy DM, Buckley PG, Bryan K, Das S, Alcock L, Foley NH et al. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation. PLoS One 2009; 4: e8154.

    Article  Google Scholar 

  55. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T, Xinarianos G et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 2005; 102: 15785–15790.

    Article  CAS  Google Scholar 

  56. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Science Foundation Ireland (07/IN.1/B1776), Children′s Medical and Research Foundation and NIH (5R01CA127496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Stallings.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Bryan, K., Buckley, P. et al. Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32, 2927–2936 (2013). https://doi.org/10.1038/onc.2012.311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.311

Keywords

This article is cited by

Search

Quick links