Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway

Abstract

Aberrant activation of the canonical Wnt signal transduction pathway is involved in many diseases including cancer and is especially implicated in the development and progression of colorectal cancer. The key effector protein of the canonical Wnt pathway is β-catenin, which functions with T-cell factor/lymphoid enhancer factor to activate expression of Wnt target genes. In this study, we used a new functional screen based on cell survival in the presence of cDNAs encoding proteins that activate the Wnt pathway thus identifying novel Wnt signaling components. Here we identify carboxypeptidase E (|CPE) and its splice variant, ΔN-CPE, as novel regulators of the Wnt pathway. We show that whereas ΔN-CPE activates the Wnt signal, the full-length CPE (F-CPE) protein is an inhibitor of Wnt/β-catenin signaling. F-CPE forms a complex with the Wnt3a ligand and the Frizzled receptor. Moreover, F-CPE disrupts disheveled-induced signalosomes that are important for transducing the Wnt signal and reduces β-catenin protein levels and activity. Taken together, our data indicate that F-CPE and ΔN-CPE regulate the canonical Wnt signaling pathway negatively and positively, respectively, and demonstrate that this screening approach can be a rapid means for isolation of novel Wnt signaling components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Clevers H . Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    Article  CAS  PubMed  Google Scholar 

  2. Polakis P . Wnt signaling and cancer. Genes Dev 2000; 14: 1837–1851.

    CAS  PubMed  Google Scholar 

  3. MacDonald BT, Tamai K, He X . Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 2009; 17: 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000; 407: 530–535.

    Article  CAS  PubMed  Google Scholar 

  5. Taelman VF, Dobrowolski R, Plouhinec JL, Fuentealba LC, Vorwald PP, Gumper I et al. Wnt signaling requires sequestration of glycogen synthase kinase 3 inside multivesicular endosomes. Cell 2010; 143: 1136–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cliffe A, Hamada F, Bienz M . A role of Dishevelled in relocating Axin to the plasma membrane during wingless signaling. Curr Biol 2003; 13: 960–966.

    Article  CAS  PubMed  Google Scholar 

  7. Schwarz-Romond T, Metcalfe C, Bienz M . Dynamic recruitment of axin by Dishevelled protein assemblies. J Cell Sci 2007; 120 (Pt 14): 2402–2412.

    Article  CAS  PubMed  Google Scholar 

  8. Bilic J, Huang YL, Davidson G, Zimmermann T, Cruciat CM, Bienz M et al. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 2007; 316: 1619–1622.

    Article  CAS  PubMed  Google Scholar 

  9. Zeng X, Huang H, Tamai K, Zhang X, Harada Y, Yokota C et al. Initiation of Wnt signaling: control of Wnt coreceptor Lrp6 phosphorylation/activation via frizzled, dishevelled and axin functions. Development 2008; 135: 367–375.

    Article  CAS  PubMed  Google Scholar 

  10. Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M . Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J Cell Sci 2010; 123 (Pt 9): 1588–1599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Angers S, Moon RT . Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10: 468–477.

    Article  CAS  PubMed  Google Scholar 

  12. Cawley NX, Wetsel WC, Murthy SR, Park JJ, Pacak K, Loh YP . New roles of carboxypeptidase e in endocrine and neural function and cancer. Endocr Rev 2012; 33: 216–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cool DR, Normant E, Shen F, Chen HC, Pannell L, Zhang Y et al. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(fat) mice. Cell 1997; 88: 73–83.

    Article  CAS  PubMed  Google Scholar 

  14. Fricker LD, Snyder SH . Purification and characterization of enkephalin convertase, an enkephalin-synthesizing carboxypeptidase. J Biol Chem 1983; 258: 10950–10955.

    CAS  PubMed  Google Scholar 

  15. Tang SS, Zhang JH, Liu HX, Li HZ . PC2/CPE-mediated pro-protein processing in tumor cells and its differentiated cells or tissues. Mol Cell Endocrinol 2009; 303: 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He P, Varticovski L, Bowman ED, Fukuoka J, Welsh JA, Miura K et al. Identification of carboxypeptidase E and gamma-glutamyl hydrolase as biomarkers for pulmonary neuroendocrine tumors by cDNA microarray. Hum Pathol 2004; 35: 1196–1209.

    Article  CAS  PubMed  Google Scholar 

  17. Horing E, Harter PN, Seznec J, Schittenhelm J, Buhring HJ, Bhattacharyya S et al. The ‘go or grow’ potential of gliomas is linked to the neuropeptide processing enzyme carboxypeptidase E and mediated by metabolic stress. Acta Neuropathol 2012; 124: 83–97.

    Article  PubMed  Google Scholar 

  18. Du J, Keegan BP, North WG . Key peptide processing enzymes are expressed by breast cancer cells. Cancer Lett 2001; 165: 211–218.

    Article  CAS  PubMed  Google Scholar 

  19. Murthy SR, Pacak K, Loh YP . Carboxypeptidase E: elevated expression correlated with tumor growth and metastasis in pheochromocytomas and other cancers. Cell Mol Neurobiol 2010; 30: 1377–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee TK, Murthy SR, Cawley NX, Dhanvantari S, Hewitt SM, Lou H et al. An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest 2011; 121: 880–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murthy SR, Lee TK, Cawley NX, Hewitt SM, Pacak K, Loh P (eds). An N-terminal truncated carboxypeptidase E splice isoform induces metastasis by activating NEDD9 and other metastasis inducing genes. AACR Annual Meeting 2012; Chicago, IL, 2012.

  22. Staal FJ, Noort Mv M, Strous GJ, Clevers HC . Wnt signals are transmitted through N-terminally dephosphorylated beta-catenin. EMBO Rep 2002; 3: 63–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Golan T, Yaniv A, Bafico A, Liu G, Gazit A . The human Frizzled 6 (HFz6) acts as a negative regulator of the canonical Wnt. beta-catenin signaling cascade. J Biol Chem 2004; 279: 14879–14888.

    Article  CAS  PubMed  Google Scholar 

  24. Rowan AJ, Lamlum H, Ilyas M, Wheeler J, Straub J, Papadopoulou A et al. APC mutations in sporadic colorectal tumors: a mutational ‘hotspot’ and interdependence of the ‘two hits’. Pro Natl Acad Sci USA 2000; 97 (7): 3352–3357.

    Article  CAS  Google Scholar 

  25. Fricker LD, Devi L . Posttranslational processing of carboxypeptidase E, a neuropeptide-processing enzyme, in AtT-20 cells and bovine pituitary secretory granules. J Neurochem 1993; 61: 1404–1415.

    Article  CAS  PubMed  Google Scholar 

  26. Felsenfeld G, Groudine M . Controlling the double helix. Nature 2003; 421: 448–453.

    Article  PubMed  Google Scholar 

  27. Park JJ, Koshimizu H, Loh YP . Biogenesis and transport of secretory granules to release site in neuroendocrine cells. J Mol Neurosci 2009; 37: 151–159.

    Article  CAS  PubMed  Google Scholar 

  28. Hausmann G, Banziger C, Basler K . Helping Wingless take flight: how WNT proteins are secreted. Nat Rev Mol Cell Biol 2007; 8: 331–336.

    Article  CAS  PubMed  Google Scholar 

  29. Strous GJ, Willemsen R, van Kerkhof P, Slot JW, Geuze HJ, Lodish HF . Vesicular stomatitis virus glycoprotein, albumin, and transferrin are transported to the cell surface via the same Golgi vesicles. J Cell Biol 1983; 97: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  30. Schwarz-Romond T, Fiedler M, Shibata N, Butler PJ, Kikuchi A, Higuchi Y et al. The DIX domain of Dishevelled confers Wnt signaling by dynamic polymerization. Nat Struct Mol Biol 2007; 14: 484–492.

    Article  CAS  PubMed  Google Scholar 

  31. Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J et al. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem 2011; 286: 8597–8608.

    Article  CAS  PubMed  Google Scholar 

  32. Metcalfe C, Bienz M . Inhibition of GSK3 by Wnt signalling—two contrasting models. J Cell Sci 2011; 124 (Pt 21): 3537–3544.

    Article  CAS  PubMed  Google Scholar 

  33. Moeller C, Swindell EC, Kispert A, Eichele G . Carboxypeptidase Z (CPZ) modulates Wnt signaling and regulates the development of skeletal elements in the chicken. Development 2003; 130: 5103–5111.

    Article  CAS  PubMed  Google Scholar 

  34. Wang L, Shao YY, Ballock RT . Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes. J Bone Miner Res 2009; 24: 265–273.

    Article  CAS  PubMed  Google Scholar 

  35. Reznik SE, Fricker LD . Carboxypeptidases from A to z: implications in embryonic development and Wnt binding. Cell Mol Life Sci 2001; 58: 1790–1804.

    Article  CAS  PubMed  Google Scholar 

  36. Dobrowolski R, De Robertis EM . Endocytic control of growth factor signalling: multivesicular bodies as signalling organelles. Nat Rev Mol Cell Biol 2012; 13: 53–60.

    Article  CAS  Google Scholar 

  37. Batlle E, Henderson JT, Beghtel H, van den Born MM, Sancho E, Huls G et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111: 251–263.

    Article  CAS  PubMed  Google Scholar 

  38. van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  39. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation, by grant no. 20120016 from the Public Committee for Allocation of Estate Funds, Ministry of Justice, Israel, the Recanati Foundation, Israel Cancer Association through the Estate of the late Alexander Smidoda, US—Israel Binational Science Foundation and in part by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development to YPL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Rosin-Arbesfeld.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skalka, N., Caspi, M., Caspi, E. et al. Carboxypeptidase E: a negative regulator of the canonical Wnt signaling pathway. Oncogene 32, 2836–2847 (2013). https://doi.org/10.1038/onc.2012.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.308

Keywords

This article is cited by

Search

Quick links