Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive neoplastic disease. Gemcitabine, the currently used chemotherapeutic drug for PDAC, elicits only minor benefits, because of the development of escape pathways leading to chemoresistance. Herein, we aimed at investigating the involvement of the mitogen activating protein kinase interacting kinase (MNK)/eIF4E pathway in the acquired drug resistance of PDAC cells. Screening of a cohort of PDAC patients by immunohistochemistry showed that eIF4E phosphorylation correlated with disease grade, early onset of disease and worse prognosis. In PDAC cell lines, chemotherapeutic drugs induced MNK-dependent phosphorylation of eIF4E. Importantly, pharmacological inhibition of MNK activity synergistically enhanced the cytostatic effect of gemcitabine, by promoting apoptosis. RNA interference (RNAi) experiments indicated that MNK2 is mainly responsible for eIF4E phosphorylation and gemcitabine resistance in PDAC cells. Furthermore, we found that gemcitabine induced the expression of the oncogenic splicing factor SRSF1 and splicing of MNK2b, a splice variant that overrides upstream regulatory pathways and confers increased resistance to the drug. Silencing of SRSF1 by RNAi abolished this splicing event and recapitulated the effects of MNK pharmacological or genetic inhibition on eIF4E phosphorylation and apoptosis in gemcitabine-treated cells. Our results highlight a novel pro-survival pathway triggered by gemcitabine in PDAC cells, which leads to MNK2-dependent phosphorylation of eIF4E, suggesting that the MNK/eIF4E pathway represents an escape route utilized by PDAC cells to withstand chemotherapeutic treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kern SE, Shi C, Hruban RH . The complexity of pancreatic ductal cancers and multidimensional strategies for therapeutic targeting. J Pathol 2011; 223: 295–306.

    Article  CAS  PubMed  Google Scholar 

  2. Falasca M, Selvaggi F, Buus R, Sulpizio S, Edling CE . Targeting phosphoinositide 3-kinase pathways in pancreatic cancer--from molecular signaling to clinical trials. Anticancer Agents Med Chem 2011; 11: 455–463.

    Article  CAS  PubMed  Google Scholar 

  3. Sun SY, Rosenberg LM, Wang X, Zhou Z, Yue P, Fu H et al. Activation of Akt and eIF4E survival pathways by rapamycin mediated mammalian target of rapamycin inhibition. Cancer Res 2005; 65: 7052–7058.

    Article  CAS  PubMed  Google Scholar 

  4. Wang X, Yue P, Chan C, Ye K, Ueda T, Watanabe-Fukunaga R et al. Inhibition of Mammalian Target of Rapamycin Induces Phosphatidylinositol 3-Kinase Dependent and Mnk-Mediated Eukaryotic Translation Initiation Factor 4E Phosphorylation. Mol Cell Biol 2007; 27: 7405–7413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zoncu R, Efeyan A, Sabatini DM . mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12: 21–35.

    Article  CAS  PubMed  Google Scholar 

  6. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL . eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′ UTR. J Cell Biol 2005; 169: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mamane Y, Petroulakis E, Rong L, Yoshida K, Ler LW, Sonenberg N . eIF4E – from translation to transformation. Oncogene 2004; 23: 3172–3179.

    Article  CAS  PubMed  Google Scholar 

  8. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Fukuyama H, Nagata S, Fukunaga R . Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 2004; 24: 6539–6654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buxade M, Parra-Palau JL, Proud CG . The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front Biosci 2008; 13: 5359–5373.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Li Y, Yang D . Phosphorylation of eIF-4E positively regulates formation of the eIF-4F translation initiation complex following DNA damage. Biochem Biophys Res Commun 2008; 367: 54–59.

    Article  CAS  PubMed  Google Scholar 

  11. Bianchini A, Loiarro M, Bielli P, Busà R, Paronetto MP, Loreni F et al. Phosphorylation of eIF4E supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis 2008; 29: 2279–2288.

    Article  CAS  PubMed  Google Scholar 

  12. Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA et al. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 2011; 71: 1849–1857.

    Article  CAS  PubMed  Google Scholar 

  13. Altman JK, Glaser H, Sassano A, Joshi S, Ueda T, Watanabe-Fukunaga R et al. Negative Regulatory Effects of Mnk Kinases in the Generation of Chemotherapy-Induced Antileukemic Responses. Mol Pharmacol 2010; 78: 778–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T et al. Dissecting eIF4E action in tumorigenesis. Genes Dev 2007; 21: 3232–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A et al. eIF4E phopshorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 2010; 107: 14134–14139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ueda T, Sasaki M, Elia AJ, Chio II, Hamada K, Fukunaga R et al. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc Natl Acad Sci USA 2010; 107: 13984–13990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Graff JR, Konicek BW, Lynch RL, Dumstorf CA, Dowless MS, McNulty AM et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res 2009; 69: 3866–3873.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshizawa A, Fukuoka J, Shimizu S, Shilo K, Franks TJ, Hewitt SM et al. Overexpression of phopsho-eIF4E is associated with survival through AKT pathway in non-small-cell lung cancer. Clin Cancer Res 2010; 16: 240–248.

    Article  CAS  PubMed  Google Scholar 

  19. Chrestensen CA, Eschenroeder A, Ross WG, Ueda T, Watanabe-Fukunaga R, Fukunaga R et al. Loss of MNK function sensitizes fibroblasts to serum-withdrawal induced apoptosis. Genes Cells 2007; 12: 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  20. Scheper GC, Parra JL, Wilson M, Van Kollenburg B, Vertegaal AC, Han ZG et al. The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol Cell Biol 2003; 23: 5692–5705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karni R, De Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14: 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. David CJ, Chen M, Assanah M, Canoll P, Manley JL . HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010; 463: 364–368.

    Article  CAS  PubMed  Google Scholar 

  23. Bielli P, Busà R, Paronetto MP, Sette C . The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer 2011; 18: 91–102.

    Article  Google Scholar 

  24. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A et al. Molecular targeting of the oncogene eIF4E in AML: a proof-of principle clinical trial with ribavirin. Blood 2009; 114: 257–260.

    Article  CAS  PubMed  Google Scholar 

  25. Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA et al. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2008; 27: 193–198.

    Article  PubMed  Google Scholar 

  26. Gonçalves V, Theisen P, Antunes O, Medeira A, Ramos JS, Jordan P et al. A missense mutation in the APC tumor suppressor gene disrupts an ASF/SF2 splicing enhancer motif and causes pathogenic skipping of exon 14. Mutat Res 2009; 662: 33–36.

    Article  PubMed  Google Scholar 

  27. Sanz DJ, Acedo A, Infante M, Durán M, Pérez-Cabornero L, Esteban-Cardeñosa E et al. A high proportion of DNA variants of BRCA1 and BRCA2 is associated with aberrant splicing in breast/ovarian cancer patients. Clin Cancer Res 2010; 16: 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  28. Hayes GM, Carrigan PE, Miller LJ . Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res 2007; 67: 2072–2080.

    Article  CAS  PubMed  Google Scholar 

  29. Hayes GM, Carrigan PE, Beck AM, Miller LJ . Targeting the RNA splicing machinery as a novel treatment strategy for pancreatic carcinoma. Cancer Res 2006; 66: 3819–3827.

    Article  CAS  PubMed  Google Scholar 

  30. Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF et al. The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene 2007; 26: 4372–4382.

    Article  PubMed  Google Scholar 

  31. Pedrotti S, Bielli P, Paronetto MP, Ciccosanti F, Fimia GM, Stamm S et al. The splicing regulator Sam68 binds to a novel exonic splicing silencer and functions in SMN2 alternative splicing in spinal muscular atrophy. EMBO J 2010; 29: 1235–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Loghlen A, Gonzalez VM, Pineiro D, Pérez-Morgado MI, Salinas M, Martín ME . Identification and molecular characterization of Mnk1b, a splice variant of human MAP kinase-interacting kinase Mnk1. Experimental Cell Res 2004; 299: 343–355.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Professor CG Proud for the generous gift of MNK2a and MNK2b plasmids, Professor A Scarpa for the gift of HPAF2 cells, Dr Enrica Bianchi for help with FACS analysis, Dr Maria Antonietta Talerico for technical support with immunohistochemistry and Dr Alessia Di Florio for helpful suggestions throughout the study. This work was supported by funds from the Associazione Italiana Ricerca sul Cancro (AIRC IG10348) and Association for International Cancer Research (AICR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Delle Fave or C Sette.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adesso, L., Calabretta, S., Barbagallo, F. et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene 32, 2848–2857 (2013). https://doi.org/10.1038/onc.2012.306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.306

Keywords

This article is cited by

Search

Quick links