Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The gain of function of p53 cancer mutant in promoting mammary tumorigenesis

Abstract

Tumor suppressor p53 is critical for suppressing all types of human cancers, including breast cancer. The p53 gene is somatically mutated in over half of all human cancers. The majority of the p53 mutations are missense mutations, leading to the expression of the full-length p53 mutants. Several hotspot mutations, including R175H, are frequently detected in human breast cancer. P53 cancer mutants not only lose tumor suppression activity but, more problematically, also gain new oncogenic activities. Despite correlation of the expression of p53 cancer mutants and the poor prognosis of human breast cancer patients, the roles of p53 cancer mutants in promoting breast cancer remain unclear. We used the humanized p53 cancer mutant knock-in (R175H) mice and mouse mammary tumor virus (MMTV)-Wnt-1 transgenic (mWnt-1) mice to specifically address the gain of function of R175H in promoting breast cancer. Although both R175H/R175HmWnt-1(R175HmWnt-1) and p53−/−mWnt-1 mice died from mammary tumor at the same kinetics, which was much earlier than mWnt-1 mice, most of the R175HmWnt-1 mice developed multiple mammary tumors per mouse, whereas p53−/−mWnt-1 and mWnt-1 mice mostly developed one tumor per mouse. The multiple mammary tumors arose in the same R175HmWnt-1 mouse exhibited different histological characters. Moreover, R175H gain-of-function mutant expands the mammary epithelial stem cells (MESCs) that give rise to the mammary tumors. As ATM suppresses the expansion of MESCs, the inactivation of ATM by R175H in mammary epithelial cells (MECs) could contribute to the expansion of MESCs in R175HmWnt-1 mice. These findings provide the basis for R175H to promote the initiation of breast cancer by expanding MESCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Parkin DM . Global cancer statistics in the year 2000. Lancet Oncol 2001; 2: 533–543.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E et al. Cancer statistics, 2004. CA Cancer J Clin 2004; 54: 8–29.

    Article  PubMed  Google Scholar 

  3. Elledge RM, Allred DC . The p53 tumor suppressor gene in breast cancer. Breast Cancer Res Treat 1994; 32: 39–47.

    Article  CAS  PubMed  Google Scholar 

  4. Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG, Cardiff RD, Li A et al. Somatic mutation of p53 leads to estrogen receptor alpha-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res 2004; 64: 3525–3532.

    Article  CAS  PubMed  Google Scholar 

  5. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 1995; 9: 882–895.

    Article  CAS  PubMed  Google Scholar 

  6. Meek DW . Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 2009; 9: 714–723.

    Article  CAS  PubMed  Google Scholar 

  7. Gasco M, Shami S, Crook T . The p53 pathway in breast cancer. Breast Cancer Res 2002; 4: 70–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hussain SP, Harris CC . Molecular epidemiology and carcinogenesis: endogenous and exogenous carcinogens. Mutat Res 2000; 462: 311–322.

    Article  CAS  PubMed  Google Scholar 

  9. Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al. Gain of function mutations in p53. Nat Genet 1993; 4: 42–46.

    Article  CAS  PubMed  Google Scholar 

  10. Li B, Murphy KL, Laucirica R, Kittrell F, Medina D, Rosen JM . A transgenic mouse model for mammary carcinogenesis. Oncogene 1998; 16: 997–1007.

    Article  CAS  PubMed  Google Scholar 

  11. Wang XJ, Greenhalgh DA, Jiang A, He D, Zhong L, Brinkley BR et al. Analysis of centrosome abnormalities and angiogenesis in epidermal-targeted p53172H mutant and p53-knockout mice after chemical carcinogenesis: evidence for a gain of function. Mol Carcinog 1998; 23: 185–192.

    Article  CAS  PubMed  Google Scholar 

  12. Liu DP, Song H, Xu Y . A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene 2010; 29: 949–956.

    Article  CAS  PubMed  Google Scholar 

  13. Song H, Hollstein M, Xu Y . p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 2007; 9: 573–580.

    Article  CAS  PubMed  Google Scholar 

  14. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE . Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 1988; 55: 619–625.

    Article  CAS  PubMed  Google Scholar 

  15. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  16. Cabioglu N, Ozmen V, Kaya H, Tuzlali S, Igci A, Muslumanoglu M et al. Increased lymph node positivity in multifocal and multicentric breast cancer. J Am Coll Surg 2009; 208: 67–74.

    Article  PubMed  Google Scholar 

  17. Weissenbacher TM, Zschage M, Janni W, Jeschke U, Dimpfl T, Mayr D et al. Multicentric and multifocal versus unifocal breast cancer: is the tumor-node-metastasis classification justified? Breast Cancer Res Treat 2010; 122: 27–34.

    Article  CAS  PubMed  Google Scholar 

  18. Davidoff AM, Humphrey PA, Iglehart JD, Marks JR . Genetic basis for p53 overexpression in human breast cancer. Proc Natl Acad Sci USA 1991; 88: 5006–5010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al. Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 2009; 119: 2663–2677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reddy JP, Peddibhotla S, Bu W, Zhao J, Haricharan S, Du YC et al. Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proc Natl Acad Sci USA 2010; 107: 3728–3733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM. Oncogene 2011; 30: 1470–1480.

    Article  CAS  PubMed  Google Scholar 

  23. Lu S, Shen K, Wang Y, Santner SJ, Chen J, Brooks SC et al. Atm-haploinsufficiency enhances susceptibility to carcinogen-induced mammary tumors. Carcinogenesis 2006; 27: 848–855.

    Article  CAS  PubMed  Google Scholar 

  24. Bowen TJ, Yakushiji H, Montagna C, Jain S, Ried T, Wynshaw-Boris A . Atm heterozygosity cooperates with loss of Brca1 to increase the severity of mammary gland cancer and reduce ductal branching. Cancer Res 2005; 65: 8736–8746.

    Article  CAS  PubMed  Google Scholar 

  25. Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc Natl Acad Sci USA 2006; 103: 3799–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  PubMed  Google Scholar 

  27. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  28. Kalo E, Buganim Y, Shapira KE, Besserglick H, Goldfinger N, Weisz L et al. Mutant p53 attenuates the SMAD-dependent transforming growth factor beta1 (TGF-beta1) signaling pathway by repressing the expression of TGF-beta receptor type II. Mol Cell Biol 2007; 27: 8228–8242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kitamura T, Fukuyo Y, Inoue M, Horikoshi NT, Shindoh M, Rogers BE et al. Mutant p53 disrupts the stress MAPK activation circuit induced by ASK1-dependent stabilization of Daxx. Cancer Res 2009; 69: 7681–7688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gallagher WM, Argentini M, Sierra V, Bracco L, Debussche L, Conseiller E . MBP1: a novel mutant p53-specific protein partner with oncogenic properties. Oncogene 1999; 18: 3608–3616.

    Article  CAS  PubMed  Google Scholar 

  31. Muller PA, Caswell PT, Doyle B, Iwanicki MP, Tan EH, Karim S et al. Mutant p53 drives invasion by promoting integrin recycling. Cell 2009; 139: 1327–1341.

    Article  PubMed  Google Scholar 

  32. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  33. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R et al. Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 2007; 67: 2396–2401.

    Article  CAS  PubMed  Google Scholar 

  34. Haupt S, di Agostino S, Mizrahi I, Alsheich-Bartok O, Voorhoeve M, Damalas A et al. Promyelocytic leukemia protein is required for gain of function by mutant p53. Cancer Res 2009; 69: 4818–4826.

    Article  CAS  PubMed  Google Scholar 

  35. Xu Y . DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 2006; 6: 261–270.

    Article  CAS  PubMed  Google Scholar 

  36. Smalley MJ . Isolation, culture and analysis of mouse mammary epithelial cells. Methods Mol Biol 2010; 633: 139–170.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yi Li for the MMTV-Wnt-1 mice. This work was supported by grants from the NIH (R01 CA94254) and DOD Breast Cancer Research Program (W81XWH-08-1-0381) to YX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, X., Liu, D. & Xu, Y. The gain of function of p53 cancer mutant in promoting mammary tumorigenesis. Oncogene 32, 2900–2906 (2013). https://doi.org/10.1038/onc.2012.299

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.299

Keywords

This article is cited by

Search

Quick links