Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4

Abstract

The female hormone progesterone (P4) promotes the expansion of stem-like cancer cells in estrogen receptor (ER)- and progesterone receptor (PR)-positive breast tumors. The expanded tumor cells lose expression of ER and PR, express the tumor-initiating marker CD44, the progenitor marker cytokeratin 5 (CK5) and are more resistant to standard endocrine and chemotherapies. The mechanisms underlying this hormone-stimulated reprogramming have remained largely unknown. In the present study, we investigated the role of microRNAs in progestin-mediated expansion of this dedifferentiated tumor cell population. We demonstrate that P4 rapidly downregulates miR-29 family members, particularly in the CD44+ cell population. Downregulation of miR-29 members potentiates the expansion of CK5+ and CD44+ cells in response to progestins, and results in increased stem-like properties in vitro and in vivo. We demonstrate that miR-29 directly targets Krüppel-like factor 4 (KLF4), a transcription factor required for the reprogramming of differentiated cells to pluripotent stem cells, and for the maintenance of breast cancer stem cells. These results reveal a novel mechanism, whereby progestins increase the stem cell-like population in hormone-responsive breast cancers, by decreasing miR-29 to augment PR-mediated upregulation of KLF4. Elucidating the mechanisms whereby hormones mediate the expansion of stem-like cells furthers our understanding of the progression of hormone-responsive breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mulac-Jericevic B, Lydon JP, DeMayo FJ, Conneely OM . Defective mammary gland morphogenesis in mice lacking the progesterone receptor B isoform. Proc Natl Acad Sci 2003; 100: 9744–9749.

    Article  CAS  Google Scholar 

  2. Ismail PM, Amato P, Soyal SM, DeMayo FJ, Conneely OM, O’Malley BW et al. Progesterone involvement in breast development and tumorigenesis—as revealed by progesterone receptor ‘knockout’ and ‘knockin’ mouse models. Steroids 2003; 68: 779–787.

    Article  CAS  Google Scholar 

  3. Lange CA . Challenges to defining a role for progesterone in breast cancer. Steroids 2008; 73: 914–921.

    Article  CAS  Google Scholar 

  4. Lydon JP, Ge G, Kittrell FS, Medina D, O’Malley BW . Murine mammary gland carcinogenesis is critically dependent on progesterone receptor function. Cancer Res 1999; 59: 4276–4284.

    CAS  PubMed  Google Scholar 

  5. Magnusson C, Baron JA, Correia N, Bergström R, Adami HO, Persson I . Breast-cancer risk following long-term oestrogen- and oestrogen-progestin-replacement therapy. Int J Cancer 1999; 81: 339–344.

    Article  CAS  Google Scholar 

  6. Ross RK, Paganini-Hill A, Wan PC, Pike MC . Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst 2000; 92: 328–332.

    Article  CAS  Google Scholar 

  7. Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R . Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA 2000; 283: 485–491.

    Article  CAS  Google Scholar 

  8. Asselin-Labat M-L, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER et al. Control of mammary stem cell function by steroid hormone signalling. Nature 2010; 465: 798–802.

    Article  CAS  Google Scholar 

  9. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL et al. Progesterone induces adult mammary stem cell expansion. Nature 2010; 465: 803–807.

    Article  CAS  Google Scholar 

  10. Graham JD, Mote PA, Salagame U, van Dijk JH, Balleine RL, Huschtscha LI et al. DNA replication licensing and progenitor numbers are increased by progesterone in normal human breast. Endocrinology 2009; 150: 3318–3326.

    Article  CAS  Google Scholar 

  11. Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA . Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci 2008; 105: 5774–5779.

    Article  CAS  Google Scholar 

  12. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 2010; 468: 98–102.

    Article  CAS  Google Scholar 

  13. Böcker W, Moll R, Poremba C, Holland R, Van Diest PJ, Dervan P et al. Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 2002; 82: 737–746.

    Article  Google Scholar 

  14. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  Google Scholar 

  15. Haughian JM, Pinto MP, Harrell JC, Bliesner BS, Joensuu KM, Dye WW et al. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci USA 2012; 109: 2742–2747.

    Article  CAS  Google Scholar 

  16. Kabos P, Haughian JM, Wang X, Dye WW, Finlayson C, Elias A et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treatment 2010; 128: 45–55.

    Article  Google Scholar 

  17. Shcherbata HR, Hatfield S, Ward EJ . The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 2006; 5: 172–175.

    Article  CAS  Google Scholar 

  18. Zhang J, Luo N, Luo Y, Peng Z, Zhang J, Li S . microRNA-150 inhibits human CD133-positive liver cancer stem cells through negative regulation of the transcription factor c-Myb. Int J Oncol 2011; 40: 747–756.

    PubMed  Google Scholar 

  19. Yu F, Deng H, Yao H, Liu Q, Su F, Song E . Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 2010; 29: 4194–4204.

    Article  CAS  Google Scholar 

  20. Howe EN, Cochrane DR, Richer JK . Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast Cancer Res 2011; 13: R45.

    Article  CAS  Google Scholar 

  21. Radisky DC . miR-200c at the nexus of epithelial-mesenchymal transition, resistance to apoptosis, and the breast cancer stem cell phenotype. Breast Cancer Res 2011; 13: 110.

    Article  Google Scholar 

  22. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 2011; 17: 211–215.

    Article  CAS  Google Scholar 

  23. Tessel MA, Krett NL, Rosen ST . Steroid receptor and microRNA regulation in cancer. Curr Opin Oncol 2010; 22: 592–597.

    Article  CAS  Google Scholar 

  24. Cochrane DR, Cittelly DM, Richer JK . Steroid receptors and microRNAs: relationships revealed. Steroids 2011; 76: 1–10.

    Article  CAS  Google Scholar 

  25. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE . Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010; 31: 2049–2057.

    Article  CAS  Google Scholar 

  26. Cittelly DM, Das PM, Spoelstra NS, Edgerton SM, Richer JK, Thor AD et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer 2010; 9: 317.

    Article  CAS  Google Scholar 

  27. Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene 2011; 30: 1082–1097.

    Article  CAS  Google Scholar 

  28. Lin S-L, Chang DC, Chang-Lin S, Lin C-H, Wu DTS, Chen DT et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 2008; 14: 2115–2124.

    Article  CAS  Google Scholar 

  29. Lin S-L, Chang DC, Lin C-H, Ying S-Y, Leu D, Wu DTS . Regulation of Somatic Cell Reprogramming Through Inducible Mir-302 Expression. Nucleic Acids Res 2011; 39: 1054–1065.

    Article  CAS  Google Scholar 

  30. Cochrane DR, Jacobsen BM, Connaghan K, Howe EN, Bain DL, Richer JK . Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 2012; 355: 15–24.

    Article  CAS  Google Scholar 

  31. Wong C, Hou P, Tseng S, Chien C, Wu K, Chen H et al. Krüppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 2010; 28: 1510–1517.

    Article  CAS  Google Scholar 

  32. Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30: 2161–2172.

    Article  CAS  Google Scholar 

  33. Zhang P, Andrianakos R, Yang Y, Liu C, Lu W . Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating nanog gene expression. J Biol Chem 2010; 285: 9180–9189.

    Article  CAS  Google Scholar 

  34. Liu H, Patel MR, Prescher JA, Patsialou A, Qian D, Lin J et al. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci USA 2010; 107: 18115–18120.

    Article  CAS  Google Scholar 

  35. Nguyen T, Kuo C, Nicholl MB, Sim M-S, Turner RR, Morton DL et al. Downregulation of microRNA-29c is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. Epigenetics 2011; 6: 388–394.

    Article  CAS  Google Scholar 

  36. Sengupta S, den Boon JA, Chen I-H, Newton MA, Stanhope SA, Cheng Y-J et al. MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci 2008; 105: 5874–5878.

    Article  CAS  Google Scholar 

  37. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci 2007; 104: 15805–15810.

    Article  CAS  Google Scholar 

  38. Hwang H-W, Wentzel EA, Mendell JT . A hexanucleotide element directs microRNA nuclear import. Science 2007; 315: 97–100.

    Article  CAS  Google Scholar 

  39. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME . Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110: 1155–1164.

    Article  CAS  Google Scholar 

  40. Moore MR, Zhou J-L, Blankenship KA, Strobl JS, Edwards DP, Gentry RN . A sequence in the 5′ flanking region confers progestin responsiveness on the human c-myc gene. J Steroid Biochem Mol Biol 1997; 62: 243–252.

    Article  CAS  Google Scholar 

  41. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  42. Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB . Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 2002; 277: 5209–5218.

    Article  CAS  Google Scholar 

  43. Park S-Y, Lee JH, Ha M, Nam J-W, Kim VN . miR-29 miRNAs activate p53 by targeting p85[alpha] and CDC42. Nat Struct Mol Biol 2009; 16: 23–29.

    Article  CAS  Google Scholar 

  44. Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–1495.

    Article  CAS  Google Scholar 

  45. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    Article  CAS  Google Scholar 

  46. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  Google Scholar 

  47. Iorio MV, Ferracin M, Liu C-G, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–7070.

    Article  CAS  Google Scholar 

  48. Zhu M, Yi M, Kim CH, Deng C, Li Y, Medina D et al. Integrated miRNA and mRNA expression profiling of mouse mammary tumor models identifies miRNA signatures associated with mammary tumor lineage. Genome Biol 2011; 12: R77.

    Article  CAS  Google Scholar 

  49. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin S-F, Dunning MJ et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol 2007; 8: R214.

    Article  Google Scholar 

  50. Zhang Z, Zou J, Wang G-K, Zhang J-T, Huang S, Qin Y-W et al. Uracils at nucleotide position 9-11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res 2011; 39: 4387–4395.

    Article  CAS  Google Scholar 

  51. Yang C-S, Li Z, Rana TM . microRNAs modulate iPS cell generation. RNA. 2011; 17: 1451–1460.

    Article  CAS  Google Scholar 

  52. Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 2009; 136: 364–377.

    Article  CAS  Google Scholar 

  53. Liu R, Zhou Z, Zhao D, Chen C . The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol Endocrinol 2011; 25: 1137–1144.

    Article  CAS  Google Scholar 

  54. Sartorius CA, Harvell DME, Shen T, Horwitz KB . Progestins initiate a luminal to myoepithelial switch in estrogen-dependent human breast tumors without altering growth. Cancer Res 2005; 65: 9779–9788.

    Article  CAS  Google Scholar 

  55. Bu W, Chen J, Morrison GD, Huang S, Creighton CJ, Huang J et al. Keratin 6a marks mammary bipotential progenitor cells that can give rise to a unique tumor model resembling human normal-like breast cancer. Oncogene 2011; 30: 4399–4409.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the University of Colorado Cancer Center Cytometry and Cell Sorting Shared Resource Facility supported by P30CA046934. The human CK5 promoter (KRT5) was a gift from Elaine Fuchs (The Rockefeller University). NIH F31CA165668-01 supported ENH. NIH RO1CA140985 supported CAS. DOD BCRP Postdoctoral Fellowship W81XWH-11-1-0101 (DMC) and DOD Idea Award BCRP W81XWH-11-1-0210 (CAS, JKR) supported this work.

DMC performed most of the studies. JFS, PH created BT474 stable cell lines and performed reverse-transcriptase PCRs in BT474 cells. ENH quantified immunofluorescence images. SDA created the KRT5-luciferase reporter. NSS performed IHC. DMC, JFS, CAS, BMJ and JKR contributed intellectual input towards the design, implementation and interpretation of results. DMC wrote the manuscript. BMJ, CAS, JKR provided editorial assistance. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J K Richer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cittelly, D., Finlay-Schultz, J., Howe, E. et al. Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer cells via KLF4. Oncogene 32, 2555–2564 (2013). https://doi.org/10.1038/onc.2012.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.275

Keywords

This article is cited by

Search

Quick links