Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1

Abstract

Increasing evidence suggests that prostate cancer is overdiagnosed and overtreated, and prognostic biomarkers would aid in treatment selection. To define prognostic biomarkers for aggressive prostate cancer, we carried out gene-expression profiling of 98 prostate tumors and 52 benign adjacent prostate tissue samples with detailed clinical annotation. We identified 28 transcripts significantly associated with recurrence after radical prostatectomy including NuSAP, a protein that binds DNA to the mitotic spindle. Elevated NuSAP transcript levels were associated with poor outcome in two independent prostate cancer gene-expression datasets. To characterize the role and regulation of NuSAP in prostate cancer, we studied the expression of NuSAP in the LNCaP and PC3 human prostate cancer cell lines. Posttranscriptional silencing of the NuSAP gene severely hampered the ability of PC3 to invade and proliferate in vitro. The promoter region of the NuSAP gene contains two CCAAT boxes and binding sites for E2F. Transient transfection of an E2F1 cDNA and 431 bp of the NuSAP promoter demonstrated E2F1 as an important regulator of expression. Deletion of the E2F-binding site at nucleotide −246 negated the effects of E2F1 on NuSAP expression. Electrophoretic mobility shift assays demonstrated that nuclear extracts of cells overexpressing E2F1 bound directly to the E2F-binding site in the NuSAP promoter region. Finally, immunohistochemistry showed a strong correlation between E2F1 and NuSAP expression in human prostate cancer samples. NuSAP is a novel biomarker for prostate cancer recurrence after surgery and its overexpression appears to be driven in part by E2F1 activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    PubMed  Google Scholar 

  2. Schroder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009; 360: 1320–1328.

    Article  PubMed  Google Scholar 

  3. Roobol MJ, Kerkhof M, Schroder FH, Cuzick J, Sasieni P, Hakama M et al. Prostate cancer mortality reduction by prostate-specific antigen-based screening adjusted for nonattendance and contamination in the European Randomised Study of Screening for Prostate Cancer (ERSPC). Eur Urol 2009; 56: 584–591.

    Article  PubMed  Google Scholar 

  4. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  5. Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 2007; 67: 8504–8510.

    Article  CAS  PubMed  Google Scholar 

  6. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002; 62: 4499–4506.

    CAS  PubMed  Google Scholar 

  7. Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML et al. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res 2001; 61: 4683–4688.

    CAS  PubMed  Google Scholar 

  8. Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R et al. Gene expression analysis of prostate cancers. Mol Carcinog 2002; 33: 25–35.

    Article  CAS  PubMed  Google Scholar 

  9. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203–209.

    Article  CAS  PubMed  Google Scholar 

  10. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  11. Welsh JB, Sapinoso LM, Su AI, Kern SG, Wang-Rodriguez J, Moskaluk CA et al. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res 2001; 61: 5974–5978.

    CAS  PubMed  Google Scholar 

  12. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC et al. Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 2005; 294: 433–439.

    Article  CAS  PubMed  Google Scholar 

  13. Abraham JE, Maranian MJ, Driver KE, Platte R, Kalmyrzaev B, Baynes C et al. CYP2D6 gene variants: association with breast cancer specific survival in a cohort of breast cancer patients from the United Kingdom treated with adjuvant tamoxifen. Breast Cancer Res 2010; 12: R64.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Amemiya H, Menolascino F, Pena A . Role of the expression of c-Met receptor in the progression of gastric cancer. Invest Clin 2010; 51: 369–380.

    PubMed  Google Scholar 

  15. Aune G, Lian AM, Tingulstad S, Torp SH, Forsmo S, Reseland JE et al. Increased circulating hepatocyte growth factor (HGF): a marker of epithelial ovarian cancer and an indicator of poor prognosis. Gynecol Oncol 2011; 121: 402–406.

    Article  CAS  PubMed  Google Scholar 

  16. Bryant RJ, Cross NA, Eaton CL, Hamdy FC, Cunliffe VT . EZH2 promotes proliferation and invasiveness of prostate cancer cells. Prostate 2007; 67: 547–556.

    Article  CAS  PubMed  Google Scholar 

  17. Chan JM, Stampfer MJ, Ma J, Gann P, Gaziano JM, Pollak M et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J Natl Cancer Inst 2002; 94: 1099–1106.

    Article  CAS  PubMed  Google Scholar 

  18. Chotteau-Lelievre A, Revillion F, Lhotellier V, Hornez L, Desbiens X, Cabaret V et al. Prognostic value of ERM gene expression in human primary breast cancers. Clin Cancer Res 2004; 10: 7297–7303.

    Article  CAS  PubMed  Google Scholar 

  19. Engers R, Ziegler S, Mueller M, Walter A, Willers R, Gabbert HE . Prognostic relevance of increased Rac GTPase expression in prostate carcinomas. Endocr Relat Cancer 2007; 14: 245–256.

    Article  CAS  PubMed  Google Scholar 

  20. Gorter A, Zijlmans HJ, van Gent H, Trimbos JB, Fleuren GJ, Jordanova ES . Versican expression is associated with tumor-infiltrating CD8-positive T cells and infiltration depth in cervical cancer. Mod Pathol 2010; 23: 1605–1615.

    Article  CAS  PubMed  Google Scholar 

  21. Helfenstein A, Frahm SO, Krams M, Drescher W, Parwaresch R, Hassenpflug J . Minichromosome maintenance protein (MCM6) in low-grade chondrosarcoma: distinction from enchondroma and identification of progressive tumors. Am J Clin Pathol 2004; 122: 912–918.

    Article  CAS  PubMed  Google Scholar 

  22. Kosari F, Munz JM, Savci-Heijink CD, Spiro C, Klee EW, Kube DM et al. Identification of prognostic biomarkers for prostate cancer. Clin Cancer Res 2008; 14: 1734–1743.

    Article  CAS  PubMed  Google Scholar 

  23. Lammers LA, Mathijssen RH, van Gelder T, Bijl MJ, de Graan AJ, Seynaeve C et al. The impact of CYP2D6-predicted phenotype on tamoxifen treatment outcome in patients with metastatic breast cancer. Br J Cancer 2010; 103: 765–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miyata Y, Sakai H, Kanda S, Igawa T, Hayashi T, Kanetake H . Expression of insulin-like growth factor binding protein-3 before and after neoadjuvant hormonal therapy in human prostate cancer tissues: correlation with histopathologic effects and biochemical recurrence. Urology 2004; 63: 1184–1190.

    Article  PubMed  Google Scholar 

  25. Monge M, Colas E, Doll A, Gil-Moreno A, Castellvi J, Diaz B et al. Proteomic approach to ETV5 during endometrial carcinoma invasion reveals a link to oxidative stress. Carcinogenesis 2009; 30: 1288–1297.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy AJ, Hughes CA, Barrett C, Magee H, Loftus B, O’Leary JJ et al. Low-level TOP2A amplification in prostate cancer is associated with HER2 duplication, androgen resistance, and decreased survival. Cancer Res 2007; 67: 2893–2898.

    Article  CAS  PubMed  Google Scholar 

  27. Mustjoki S, Hernesniemi S, Rauhala A, Kahkonen M, Almqvist A, Lundan T et al. A novel dasatinib-sensitive RCSD1-ABL1 fusion transcript in chemotherapy-refractory adult pre-B lymphoblastic leukemia with t(1;9)(q24;q34). Haematologica 2009; 94: 1469–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schrader C, Janssen D, Klapper W, Siebmann JU, Meusers P, Brittinger G et al. Minichromosome maintenance protein 6, a proliferation marker superior to Ki-67 and independent predictor of survival in patients with mantle cell lymphoma. Br J Cancer 2005; 93: 939–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Setoguchi T, Kikuchi H, Yamamoto M, Baba M, Ohta M, Kamiya K et al. Microarray analysis identifies versican and CD9 as potent prognostic markers in gastric gastrointestinal stromal tumors. Cancer Sci 2011; 102: 883–889.

    Article  CAS  PubMed  Google Scholar 

  30. Wong N, Yeo W, Wong WL, Wong NL, Chan KY, Mo FK et al. TOP2A overexpression in hepatocellular carcinoma correlates with early age onset, shorter patients survival and chemoresistance. Int J Cancer 2009; 124: 644–652.

    Article  CAS  PubMed  Google Scholar 

  31. Yu J, Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 2007; 67: 10657–10663.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan RH, Jeng YM, Pan HW, Hu FC, Lai PL, Lee PH et al. Overexpression of KIAA0101 predicts high stage, early tumor recurrence, and poor prognosis of hepatocellular carcinoma. Clin Cancer Res 2007; 13 (Pt 1): 5368–5376.

    Article  CAS  PubMed  Google Scholar 

  33. Bogunovic D, O’Neill DW, Belitskaya-Levy I, Vacic V, Yu YL, Adams S et al. Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival. Proc Natl Acad Sci USA 2009; 106: 20429–20434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL . Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest 2004; 113: 913–923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fujiwara T, Harigae H, Okitsu Y, Takahashi S, Yokoyama H, Yamada MF et al. Expression analyses and transcriptional regulation of mouse nucleolar spindle-associated protein gene in erythroid cells: essential role of NF-Y. Br J Haematol 2006; 135: 583–590.

    Article  CAS  PubMed  Google Scholar 

  37. Hussain S, Benavente SB, Nascimento E, Dragoni I, Kurowski A, Gillich A et al. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J Cell Biol 2009; 186: 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA et al. Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res 2006; 66: 11897–11906.

    Article  CAS  PubMed  Google Scholar 

  39. Malhotra S, Lapointe J, Salari K, Higgins JP, Ferrari M, Montgomery K et al. A tri-marker proliferation index predicts biochemical recurrence after surgery for prostate cancer. PLoS One 2011; 6: e20293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adamo B, Anders CK . Stratifying triple-negative breast cancer: which definition(s) to use? Breast Cancer Res 2011; 13: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodriguez-Enriquez S, Pacheco-Velazquez SC, Gallardo-Perez JC, Marin-Hernandez A, Aguilar-Ponce JL, Ruiz-Garcia E et al. Multi-biomarker pattern for tumor identification and prognosis. J Cell Biochem 2011; 112: 2703–2715.

    Article  CAS  PubMed  Google Scholar 

  42. von Euler H, Eriksson S . Comparative aspects of the proliferation marker thymidine kinase 1 in human and canine tumour diseases. Vet Comp Oncol 2011; 9: 1–15.

    Article  CAS  PubMed  Google Scholar 

  43. Pflueger D, Terry S, Sboner A, Habegger L, Esgueva R, Lin PC et al. Discovery of non-ETS gene fusions in human prostate cancer using next-generation RNA sequencing. Genome Res 2011; 21: 56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wadia PP, Coram M, Armstrong RJ, Mindrinos M, Butte AJ, Miklos DB . Antibodies specifically target AML antigen NuSAP1 after allogeneic bone marrow transplantation. Blood 2010; 115: 2077–2087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C et al. The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 2010; 120: 4478–4492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iyer J, Moghe S, Furukawa M, Tsai MY . What's Nu(SAP) in mitosis and cancer? Cell Signal 2011; 23: 991–998.

    Article  CAS  PubMed  Google Scholar 

  47. Vanden Bosch A, Raemaekers T, Denayer S, Torrekens S, Smets N, Moermans K et al. NuSAP is essential for chromatin-induced spindle formation during early embryogenesis. J Cell Sci 2010; 123 (Pt 19): 3244–3255.

    Article  CAS  PubMed  Google Scholar 

  48. Lapointe J, Li C, Higgins JP, van de RM, Bair E, Montgomery K et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101: 811–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kim YH, Pollack JR . Comparative genomic hybridization on spotted oligonucleotide microarrays. Methods Mol Biol 2009; 556: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC, Dwight SS et al. The Stanford Microarray Database. Nucleic Acids Res 2001; 29: 152–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tibshirani R, Hastie T, Narasimhan B, Chu G . Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci USA 2002; 99: 6567–6572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by the NIH (CA112016, CA111782 and CA130472 to JDB) and the Department of Defense (W81XWH-11-1-0447 to JDB).

Author Contributions: ZGG, JDB and JKM agree with the manuscript's results and conclusions, analyzed the data, prepared tissue samples and contributed to the writing of the paper. ZGG and JDB designed the experiments/study. ZGG and JKM collected the data/did experiments for the study. ZGG wrote the first draft of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Brooks.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulzar, Z., McKenney, J. & Brooks, J. Increased expression of NuSAP in recurrent prostate cancer is mediated by E2F1. Oncogene 32, 70–77 (2013). https://doi.org/10.1038/onc.2012.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.27

Keywords

This article is cited by

Search

Quick links