Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An apoptosis-independent role of SMAC in tumor suppression

Abstract

Reduced expression of the pro-apoptotic protein SMAC (second mitochondria-derived activator of caspase) has been reported to correlate with cancer progression, while its significance and underlying mechanisms are poorly understood. In this study, we investigated the role of SMAC in intestinal tumorigenesis using both human samples and animal models. Decreased SMAC expression was found to correlate with increased cIAP2 expression and higher grades of human colon cancer. In mice, SMAC deficiency significantly increased the incidence and size of colon tumors induced by azoxymethane (AOM)/dextran sulfate sodium salt (DSS), and highly enriched β-catenin hot spot mutations. SMAC deficiency also significantly increased the incidence of spontaneous intestinal polyps in APCMin/+ mice. Loss of SMAC in mice led to elevated levels of cIAP1 and cIAP2, increased proliferation and activation of the NF-κB p65 subunit in normal and tumor tissues. Unexpectedly, SMAC deficiency had little effect on the incidence of precursor lesions, or apoptosis induced by AOM or DSS, or in established tumors in mice. Furthermore, SMAC knockout enhanced TNFα-mediated NF-κB activation via cIAP2 in HCT 116 colon cancer cells. These results demonstrate an essential and apoptosis-independent function of SMAC in tumor suppression and provide new insights into the biology and targeting of colon cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

SMAC:

second mitochondria-derived activator of caspases

IAPs:

inhibitors of apoptosis proteins

BrdU:

5-bromodeoxyuridine

TUNEL:

terminal deoxynucleotidyl transferase–mediated deoxyuridinetriphosphate nick end labeling

WT:

wild type

KO:

knockout

AOM:

azoxymethane

DSS:

dextran sulfate sodium salt

ACF:

aberrant crypt foci

NSAID:

nonsteroidal anti-inflammatory drugs

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

GSK-3β:

glycogen synthase kinase 3 beta

TRAIL:

tumor necrosis factor-related apoptosis inducing ligand

TNFα:

tumor necrosis factor alpha

References

  1. Du C, Fang M, Li Y, Li L, Wang X . Smac a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000; 102: 33–42.

    Article  CAS  Google Scholar 

  2. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000; 102: 43–53.

    Article  CAS  Google Scholar 

  3. Gyrd-Hansen M, Meier P . IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 2010; 10: 561–574.

    Article  CAS  Google Scholar 

  4. Yu J, Wang P, Ming L, Wood MA, Zhang L . SMAC/Diablo mediates the proapoptotic function of PUMA by regulating PUMA-induced mitochondrial events. Oncogene 2007; 26: 4189–4198.

    Article  CAS  Google Scholar 

  5. Sun Q, Zheng X, Zhang L, Yu J . Smac modulates chemosensitivity in head and neck cancer cells through the mitochondrial apoptotic pathway. Clin Cancer Res 2011; 17: 2361–2372.

    Article  CAS  Google Scholar 

  6. Kohli M, Yu J, Seaman C, Bardelli A, Kinzler KW, Vogelstein B et al. SMAC/Diablo-dependent apoptosis induced by nonsteroidal antiinflammatory drugs (NSAIDs) in colon cancer cells. Proc Natl Acad Sci USA 2004; 101: 16897–16902.

    Article  CAS  Google Scholar 

  7. Bank A, Wang P, Du C, Yu J, Zhang L . SMAC mimetics sensitize nonsteroidal anti-inflammatory drug-induced apoptosis by promoting caspase-3-mediated cytochrome c release. Cancer Res 2008; 68: 276–284.

    Article  CAS  Google Scholar 

  8. Fulda S, Wick W, Weller M, Debatin KM . Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–815.

    Article  CAS  Google Scholar 

  9. Okada H, Suh WK, Jin J, Woo M, Du C, Elia A et al. Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 2002; 22: 3509–3517.

    Article  CAS  Google Scholar 

  10. Martinez-Ruiz G, Maldonado V, Ceballos-Cancino G, Grajeda JP, Melendez-Zajgla J . Role of Smac/DIABLO in cancer progression. J Exp Clin Cancer Res 2008; 27: 48.

    Article  Google Scholar 

  11. Xu Y, Zhou L, Huang J, Liu F, Yu J, Zhan Q et al. Role of smac in determining the chemotherapeutic response of esophageal squamous cell carcinoma. Clin Cancer Res 2011; 17: 5412–5422.

    Article  CAS  Google Scholar 

  12. Endo K, Kohnoe S, Watanabe A, Tashiro H, Sakata H, Morita M et al. Clinical significance of Smac/DIABLO expression in colorectal cancer. Oncol Rep 2009; 21: 351–355.

    Google Scholar 

  13. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG . IAP-targeted therapies for cancer. Oncogene 2008; 27: 6252–6275.

    Article  CAS  Google Scholar 

  14. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  Google Scholar 

  15. Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res 2007; 67: 11493–11498.

    Article  CAS  Google Scholar 

  16. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  Google Scholar 

  17. Wang L, Du F, Wang X . TNF alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  Google Scholar 

  18. Krajewska M, Krajewski S, Banares S, Huang X, Turner B, Bubendorf L et al. Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res 2003; 9: 4914–4925.

    CAS  Google Scholar 

  19. Qiu W, Carson-Walter EB, Kuan SF, Zhang L, Yu J . PUMA suppresses intestinal tumorigenesis in mice. Cancer Res. 2009; 69: 4999–5006.

    Article  CAS  Google Scholar 

  20. Stevens RG, Swede H, Rosenberg DW . Epidemiology of colonic aberrant crypt foci: review and analysis of existing studies. Cancer Lett 2007; 252: 171–183.

    Article  CAS  Google Scholar 

  21. Clevers H . Wnt/beta-catenin signaling in development and disease. Cell 2006; 127: 469–480.

    Article  CAS  Google Scholar 

  22. Takahashi M, Nakatsugi S, Sugimura T, Wakabayashi K . Frequent mutations of the beta-catenin gene in mouse colon tumors induced by azoxymethane. Carcinogenesis 2000; 21: 1117–1120.

    CAS  Google Scholar 

  23. Hirose Y, Yoshimi N, Makita H, Hara A, Tanaka T, Mori H . Early alterations of apoptosis and cell proliferation in azoxymethane-initiated rat colonic epithelium. Jpn J Cancer Res 1996; 87: 575–582.

    Article  CAS  Google Scholar 

  24. Qiu W, Wu B, Wang X, Buchanan ME, Regueiro MD, Hartman DJ et al. PUMA-mediated intestinal epithelial apoptosis contributes to ulcerative colitis in humans and mice. J Clin Invest 2011; 121: 1722–1732.

    Article  CAS  Google Scholar 

  25. Su LK, Kinzler KW, Vogelstein B, Preisinger AC, Moser AR, Luongo C et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science 1992; 256: 668–670.

    Article  CAS  Google Scholar 

  26. Qiu W, Wang X, Leibowitz B, Liu H, Barker N, Okada H et al. Chemoprevention by nonsteroidal anti-inflammatory drugs eliminates oncogenic intestinal stem cells via SMAC-dependent apoptosis. Proc Natl Acad Sci USA 2010; 107: 20027–20032.

    Article  CAS  Google Scholar 

  27. Petersen SL, Peyton M, Minna JD, Wang X . Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression. Proc Natl Acad Sci USA 2010; 107: 11936–11941.

    Article  CAS  Google Scholar 

  28. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  29. Mace PD, Smits C, Vaux DL, Silke J, Day CL . Asymmetric recruitment of cIAPs by TRAF2. J Mol Biol 2010; 400: 8–15.

    Article  CAS  Google Scholar 

  30. Conze DB, Albert L, Ferrick DA, Goeddel DV, Yeh WC, Mak T et al. Posttranscriptional downregulation of c-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo. Mol Cell Biol 2005; 25: 3348–3356.

    Article  CAS  Google Scholar 

  31. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118: 285–296.

    Article  CAS  Google Scholar 

  32. Quante M, Wang TC . Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology 2008; 23: 350–359.

    Article  CAS  Google Scholar 

  33. Grivennikov SI, Greten FR, Karin M . Immunity, inflammation, and cancer. Cell 2010; 140: 883–899.

    Article  CAS  Google Scholar 

  34. Vlantis K, Wullaert A, Sasaki Y, Schmidt-Supprian M, Rajewsky K, Roskams T et al. Constitutive IKK2 activation in intestinal epithelial cells induces intestinal tumors in mice. J Clin Invest 2011; 121: 2781–2793.

    Article  CAS  Google Scholar 

  35. Rakoff-Nahoum S, Medzhitov R . Regulation of spontaneous intestinal tumorigenesis through the adaptor protein MyD88. Science 2007; 317: 124–127.

    Article  CAS  Google Scholar 

  36. Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S et al. Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 2008; 118: 560–570.

    CAS  Google Scholar 

  37. Guillen-Ahlers H, Suckow MA, Castellino FJ, Ploplis VA . Fas/CD95 deficiency in ApcMin/+ mice increases intestinal tumor burden. PLoS One 2010; 5: e9070.

    Article  Google Scholar 

  38. Fingleton B, Carter KJ, Matrisian LM . Loss of functional Fas ligand enhances intestinal tumorigenesis in the Min mouse model. Cancer Res 2007; 67: 4800–4806.

    Article  CAS  Google Scholar 

  39. Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 2009; 187: 1037–1054.

    Article  CAS  Google Scholar 

  40. Yu J, Zhang L . Apoptosis in human cancer cells. Curr Opin Oncol 2004; 16: 19–24.

    Article  Google Scholar 

  41. Leibowitz B, Yu J . Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther 2010; 9: 417–422.

    Article  CAS  Google Scholar 

  42. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    Article  CAS  Google Scholar 

  43. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA 2008; 105: 11778–11783.

    Article  CAS  Google Scholar 

  44. Wu B, Qiu W, Wang P, Yu H, Cheng T, Zambetti GP et al. p53 independent induction of PUMA mediates intestinal apoptosis in response to ischaemia-reperfusion. Gut 2007; 56: 645–654.

    Article  CAS  Google Scholar 

  45. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenberger JS, Zambetti GP et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2008; 2: 576–583.

    Article  CAS  Google Scholar 

  46. Leibowitz BJ, Qiu W, Liu H, Cheng T, Zhang L, Yu J . Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21. Mol Cancer Res 2011; 9: 616–625.

    Article  CAS  Google Scholar 

  47. Boivin GP, Washington K, Yang K, Ward JM, Pretlow TP, Russell R et al. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology 2003; 124: 762–777.

    Article  Google Scholar 

  48. Yue W, Dacic S, Sun Q, Landreneau R, Guo M, Zhou W et al. Frequent inactivation of RAMP2, EFEMP1 and Dutt1 in lung cancer by promoter hypermethylation. Clin Cancer Res 2007; 13: 4336–4344.

    Article  CAS  Google Scholar 

  49. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001; 7: 673–682.

    Article  CAS  Google Scholar 

  50. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP et al. PUMA is directly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis. Cell Death Differ 2009; 16: 1192–1202.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Monica E Buchanan, Matthew F Brown and other members of Zhang and Yu labs for helpful discussion and critical reading, and Laurice A Vance-Carr for editorial assistance. This work is supported in part by NIH grants CA129829, UO1-DK085570, American Cancer Society grant RGS-10-124-01-CCE and FAMRI (JY), NIH grants CA106348, CA121105, and American Cancer Society grant RSG-07-156-01-CNE (LZ). This project used the UPCI shared glassware, animal, and cell and tissue imaging facilities that were supported in part by award P30CA047904.

Author contributions: WQ, HL, AS and QS performed the experiments and analyzed the data. HW analyzed the data. WQ, LZ and JY designed the experiments, analyzed the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, W., Liu, H., Sebastini, A. et al. An apoptosis-independent role of SMAC in tumor suppression. Oncogene 32, 2380–2389 (2013). https://doi.org/10.1038/onc.2012.265

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.265

Keywords

This article is cited by

Search

Quick links