Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

PGC-1β mediates adaptive chemoresistance associated with mitochondrial DNA mutations

Abstract

Primary mitochondrial dysfunction commonly leads to failure in cellular adaptation to stress. Paradoxically, however, nonsynonymous mutations of mitochondrial DNA (mtDNA) are frequently found in cancer cells and may have a causal role in the development of resistance to genotoxic stress induced by common chemotherapeutic agents, such as cis-diammine-dichloroplatinum(II) (cisplatin, CDDP). Little is known about how these mutations arise and the associated mechanisms leading to chemoresistance. Here, we show that the development of adaptive chemoresistance in the A549 non-small-cell lung cancer cell line to CDDP is associated with the hetero- to homoplasmic shift of a nonsynonymous mutation in MT-ND2, encoding the mitochondrial Complex-I subunit ND2. The mutation resulted in a 50% reduction of the NADH:ubiquinone oxidoreductase activity of the complex, which was compensated by increased biogenesis of respiratory chain complexes. The compensatory mitochondrial biogenesis was most likely mediated by the nuclear co-activators peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) and PGC-1β, both of which were significantly upregulated in the CDDP-resistant cells. Importantly, both transient and stable silencing of PGC-1β re-established the sensitivity of these cells to CDDP-induced apoptosis. Remarkably, the PGC-1β-mediated CDDP resistance was independent of the mitochondrial effects of the co-activator. Altogether, our results suggest that partial respiratory chain defects because of mtDNA mutations can lead to compensatory upregulation of nuclear transcriptional co-regulators, in turn mediating resistance to genotoxic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lane N . Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations. BioEssays 2011; 16: 1–10.

    Google Scholar 

  2. Duchen MR, Szabadkai G . Roles of mitochondria in human disease. Essays Biochem 2010; 47: 15–37.

    Article  Google Scholar 

  3. Park CB, Larsson N-G, Mitochondrial DNA . Mutations in disease and aging. J Cell Biol 2011; 193: 809–818.

    Article  CAS  Google Scholar 

  4. Spinazzola A, Zeviani M . Mitochondrial diseases: a cross-talk between mitochondrial and nuclear genomes. Adv Exp Med Biol 2009; 652: 69–84.

    Article  CAS  Google Scholar 

  5. Kulawiec M, Salk JJ, Ericson NG, Wanagat J, Bielas JH . Generation, function, and prognostic utility of somatic mitochondrial DNA mutations in cancer. Environ Mol Mutagen 2010; 51: 427–439.

    CAS  PubMed  Google Scholar 

  6. Chatterjee A, Mambo E, Sidransky D, Mitochondrial DNA . mutations in human cancer. Oncogene 2006; 25: 4663–4674.

    Article  CAS  Google Scholar 

  7. Kwong JQ, Henning MS, Starkov AA, Manfredi G . The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 2007; 179: 1163–1177.

    Article  CAS  Google Scholar 

  8. Wallace DC, Fan W . Energetics, epigenetics, mitochondrial genetics. Mitochondrion 2010; 10: 12–31.

    Article  CAS  Google Scholar 

  9. Chandra D, Singh KK . Genetic insights into OXPHOS defect and its role in cancer. Biochem Biophys Acta 2011; 1807: 620–625.

    CAS  PubMed  Google Scholar 

  10. Mizutani S, Miyato Y, Shidara Y, Asoh S, Tokunaga A, Tajiri T et al. Mutations in the mitochondrial genome confer resistance of cancer cells to anticancer drugs. Cancer Sci 2009; 100: 1680–1687.

    Article  CAS  Google Scholar 

  11. Ohta S . Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 2006; 25: 4768–4776.

    Article  CAS  Google Scholar 

  12. Kulawiec M, Owens KM, Singh KK . Cancer cell mitochondria confer apoptosis resistance and promote metastasis. Cancer Biol Ther 2009; 8: 1378–1385.

    Article  CAS  Google Scholar 

  13. Jones AWE, Yao Z, Vicencio JM, Karkucinska-Wieckowska A, Szabadkai G . PGC-1 family coactivators and cell fate: roles in cancer, neurodegeneration, cardiovascular disease and retrograde mitochondria-nucleus signalling. Mitochondrion 2012; 12: 86–99.

    Article  CAS  Google Scholar 

  14. Lin J, Handschin C, Spiegelman BM . Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005; 1: 361–370.

    Article  Google Scholar 

  15. Scarpulla RC . Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochem Biophys Acta 2011; 1813: 1269–1278.

    Article  CAS  Google Scholar 

  16. Hock MB, Kralli A . Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177–203.

    Article  CAS  Google Scholar 

  17. Butow RA, Avadhani NG . Mitochondrial signaling: the retrograde response. Mol Cell 2004; 14: 1–15.

    Article  CAS  Google Scholar 

  18. Guerra F, Kurelac I, Cormio A, Zuntini R, Amato LB, Ceccarelli C et al. Placing mitochondrial DNA mutations within the progression model of type I endometrial carcinoma. Hum Mol Genet 2011; 20: 2394–2405.

    Article  CAS  Google Scholar 

  19. Bianchi K, Vandecasteele G, Carli C, Romagnoli A, Szabadkai G, Rizzuto R . Regulation of Ca2+ signalling and Ca2+-mediated cell death by the transcriptional coactivator PGC-1alpha. Cell Death Differ 2006; 13: 586–596.

    Article  CAS  Google Scholar 

  20. Rahman S, Ecob R, Costello H, Sweeney MG, Duncan AJ, Pearce K et al. Hearing in 44-45 year olds with m.1555A>G, a genetic mutation predisposing to aminoglycoside-induced deafness: a population based cohort study. BMJ open 2012; 2: e000411.

    Article  Google Scholar 

  21. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, Howell N . Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat Genet 1999; 23: 147.

    Article  CAS  Google Scholar 

  22. Di Re M, Sembongi H, He J, Reyes a, Yasukawa T, Martinsson P et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucl Acid Res 2009; 37: 5701–5713.

    Article  CAS  Google Scholar 

  23. Nakamaru-Ogiso E, Han H, Matsuno-Yagi A, Keinan E, Sinha SC, Yagi T et al. The ND2 subunit is labeled by a photoaffinity analogue of asimicin, a potent complex I inhibitor. FEBS Lett 2010; 584: 883–888.

    Article  CAS  Google Scholar 

  24. Efremov RG, Baradaran R, Sazanov LA . The architecture of respiratory complex I. Nature 2010; 465: 441–445.

    Article  CAS  Google Scholar 

  25. Crews S, Ojala D, Posakony J, Nishiguchi J, Attardi G . Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature 1979; 277: 192–198.

    Article  CAS  Google Scholar 

  26. Guha M, Fang J-K, Monks R, Birnbaum MJ, Avadhani NG . Activation of Akt is essential for the propagation of mitochondrial respiratory stress signaling and activation of the transcriptional coactivator heterogeneous ribonucleoprotein A2. Mol Biol Cell 2010; 21: 3578–3589.

    Article  CAS  Google Scholar 

  27. Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO et al. DeltaNp63alpha confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 2011; 71: 1167–1176.

    Article  CAS  Google Scholar 

  28. Fernandez-Marcos PJ, Auwerx J . Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nut 2011; 93: 884S–890S.

    Article  CAS  Google Scholar 

  29. Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL et al. Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes Dev 2008; 22: 1397–1409.

    Article  CAS  Google Scholar 

  30. Verger A, Quinlan KGR, Crofts LA, Spanò S, Corda D, Kable EPW et al. Mechanisms directing the nuclear localization of the CtBP family proteins. Mol Cell Biol 2006; 26: 4882–4894.

    Article  CAS  Google Scholar 

  31. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jäger S et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006; 127: 397–408.

    Article  CAS  Google Scholar 

  32. St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB et al. Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003; 278: 26597–26603.

    Article  CAS  Google Scholar 

  33. Cullen KJ, Yang Z, Schumaker L, Guo Z . Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomemebr 2007; 39: 43–50.

    Article  CAS  Google Scholar 

  34. Huang H-L, Fang L-W, Lu S-P, Chou C-K, Luh T-Y, Lai M-Z . DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene 2003; 22: 8168–8177.

    Article  CAS  Google Scholar 

  35. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM . Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab 2006; 3: 333–341.

    Article  CAS  Google Scholar 

  36. Zechner C, Lai L, Zechner JF, Geng T, Yan Z, Rumsey JW et al. Total skeletal muscle PGC-1 deficiency uncouples mitochondrial derangements from fiber type determination and insulin sensitivity. Cell Metab 2010; 12: 633–642.

    Article  CAS  Google Scholar 

  37. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G . Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 2007; 12: 803–813.

    Article  CAS  Google Scholar 

  38. Ragan CI . Sub-fractionation of mitochondria and isolation of proteins of oxidative phosphorylation. In: Darley VM, Rickwood DWM (eds) Mitochondria: A Practical Approach. IRL Press, Oxford, 1988, pp 79–113.

    Google Scholar 

  39. Lo S, Tolner B, Taanman J-W, Cooper JM, Gu M, Hartley JA et al. Assessment of the significance of mitochondrial DNA damage by chemotherapeutic agents. Int j oncol 2005; 27: 337–344.

    CAS  PubMed  Google Scholar 

  40. Traba J, Del Arco a, Duchen MR, Szabadkai G, Satrústegui J . SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca(2+) buffering. Cell Death Differ 2012; 19: 650–660.

    Article  CAS  Google Scholar 

  41. Campanella M, Seraphim A, Abeti R, Casswell E, Echave P, Duchen MR . IF1, the endogenous regulator of the F(1)F(o)-ATPsynthase, defines mitochondrial volume fraction in HeLa cells by regulating autophagy. Biochem Biophys Acta 2009; 1787: 393–401.

    CAS  PubMed  Google Scholar 

  42. Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR . Relation Between Mitochondrial Membrane Potential and ROS Formation. Methods mol biol 2012; 810: 183–205.

    Article  CAS  Google Scholar 

  43. Ruhanen H, Borrie S, Szabadkai G, Tyynismaa H, Jones AWE, Kang D et al. Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochem Biophys Acta 2010; 1803: 931–939.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the excellent technical help of M Rahman (UCL Biosciences Molecular Biology Unit), K Pearce (UCL Genomics), the access to the Arrayscan VTI HCS Reader and the help of G Keen, M Elrayess and J Staddon from Eisai Europe Ltd; Professors M Duchen, C Boshoff and JM Funes for reagents and advice; JW Taanman for providing the A549 rho0 cell line, and D Housenloy for the Akt antibodies. The work was supported by Parkinson’s UK (G-0905) and the Medical Research Council (MRC-DTA) to GS, ZY and AJ MRW is supported by the Polish Ministry of Science and Higher Education under Grant NN407075137 and by the grant from the National Science Centre—decision number DEC-2011/01/M/NZ3/02128. JMS is a recipient of a PhD fellowship from the Foundation for Polish Science, EU, European Regional Development Fund and Operational Programme “Innovative economy”. ML is recipient of a fellowship from the Foundation for Polish Science (Programme Start) and the L’Oreal fellowship (For Women in Science). SR is supported by Great Ormond Street Hospital Children’s Charity. GK is supported by the European Union (ApoSys, ArtForce, ChemoRes) and the Ligue contre le Cancer (Laboratoire labellisé).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Szabadkai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., Jones, A., Fassone, E. et al. PGC-1β mediates adaptive chemoresistance associated with mitochondrial DNA mutations. Oncogene 32, 2592–2600 (2013). https://doi.org/10.1038/onc.2012.259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.259

Keywords

This article is cited by

Search

Quick links