Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells

Abstract

MicroRNAs have been implicated as important mediators of cancer cell homeostasis, and accumulating data suggest compelling roles for them in the apoptosis pathway. X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor and an important barrier to apoptotic cell death, but the mechanisms that determine the diverse range of XIAP expression seen in cancer remains unclear. In this study, we present evidence that miR-24 directly targets the 3′UTR of the XIAP messenger RNA (mRNA) to exert translational repression. Using a heuristic algorithm of bioinformatics analysis and in vitro screening, we identified miR-24 as a candidate regulator of XIAP expression. Array comparative genomic hybridization and spectral karyotype analysis reveal that genomic copy number loss at the miR-24 locus is concordant with the loss of endogenous miR-24 in cancer cells. Using a luciferase construct of the XIAP 3′UTR, we showed that miR-24 specifically coordinates to the XIAP mRNA. Interference with miR-24′s binding of the critical seed region, resulting from site-directed mutagenesis of the 3′UTR, significantly abrogated miR-24′s effects on XIAP expression. Moreover, miR-24 overexpression can overcome apoptosis resistance in cancer cells via downregulation of XIAP expression, and the resulting cancer cell death induced by tumor necrosis factor-related apoptosis-inducing ligand is executed by the canonical caspase-mediated apoptosis pathway. In summary, our data suggest a novel mechanism by which miR-24 directly modulates XIAP expression level and consequently the apoptosis threshold in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mashima T, Tsuruo T . Defects of the apoptotic pathway as therapeutic target against cancer. Drug Resist Updat 2005; 8: 339–343.

    Article  CAS  Google Scholar 

  2. Dean EJ, Ranson M, Blackhall F, Holt SV, Dive C . Novel therapeutic targets in lung cancer: inhibitor of apoptosis proteins from laboratory to clinic. Cancer Treat Rev 2007; 33: 203–212.

    Article  CAS  Google Scholar 

  3. Wang H, Yu SW, Koh DW, Lew J, Coombs C, Bowers W et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 2004; 24: 10963–10973.

    Article  CAS  Google Scholar 

  4. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J 1998; 17: 1675–1687.

    Article  CAS  Google Scholar 

  5. Geering B, Gurzeler U, Federzoni E, Kaufmann T, Simon HU . A novel TNFR1-triggered apoptosis pathway mediated by class IA PI3Ks in neutrophils. Blood 117: 5953–5962.

    Article  CAS  Google Scholar 

  6. Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001; 104: 791–800.

    Article  CAS  Google Scholar 

  7. Chai J, Shiozaki E, Srinivasula SM, Wu Q, Datta P, Alnemri ES et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001; 104: 769–780.

    Article  CAS  Google Scholar 

  8. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003; 11: 519–527.

    Article  CAS  Google Scholar 

  9. Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999; 401: 818–822.

    Article  CAS  Google Scholar 

  10. Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 2001; 410: 112–116.

    Article  CAS  Google Scholar 

  11. Deveraux QL, Reed JC . IAP family proteins--suppressors of apoptosis. Genes Dev 1999; 13: 239–252.

    Article  CAS  Google Scholar 

  12. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC . Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811.

    Article  CAS  Google Scholar 

  13. Diakos C, Zhong S, Xiao Y, Zhou M, Vasconcelos GM, Krapf G et al. TEL-AML1 regulation of survivin and apoptosis via miRNA-494 and miRNA-320a. Blood 2010; 116: 4885–4893.

    Article  CAS  Google Scholar 

  14. Alajez NM, Lenarduzzi M, Ito E, Hui AB, Shi W, Bruce J et al. mir-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 2011; 71: 2381–2391.

    Article  CAS  Google Scholar 

  15. Saini S, Yamamura S, Majid S, Shahryari V, Hirata H, Tanaka Y et al. MicroRNA-708 induces apoptosis and suppresses tumorigenicity in renal cancer cells. Cancer Res 2011; 71: 6208–6219.

    Article  CAS  Google Scholar 

  16. Saini S, Majid S, Yamamura S, Tabatabai L, Suh SO, Shahryari V et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res 2010; 17: 5287–5298.

    Article  Google Scholar 

  17. Siegel C, Li J, Liu F, Benashski SE, McCullough LD . miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci USA 2011; 108: 11662–11667.

    Article  CAS  Google Scholar 

  18. Zhu W, Xu H, Zhu D, Zhi H, Wang T, Wang J et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother Pharmacol 2012; 69: 723–731.

    Article  CAS  Google Scholar 

  19. Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GSA, Banerjee D, Bertino JR . A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 2007; 104: 13513–13518.

    Article  CAS  Google Scholar 

  20. Wang Q, Huang Z, Xue HL, Jin CC, Ju XL, Han JDJ et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood 2008; 111: 588–595.

    Article  CAS  Google Scholar 

  21. Lal A, Kim HH, Abdelmohsen K, Kuwano Y, Pullmann R, Srikantan S et al. p16(INK4a) translation suppressed by miR-24. Plos One 2008; 3: e1864.

    Article  Google Scholar 

  22. Lal A, Pan YF, Navarro F, Dykxhoorn DM, Moreau L, Meire E et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol 2009; 16: 492–498.

    Article  CAS  Google Scholar 

  23. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "Seedless" 3′ UTR microRNA recognition elements. Mol Cell 2009; 35: 610–625.

    Article  CAS  Google Scholar 

  24. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T . Identification of novel genes coding for small expressed RNAs. Science 2001; 294: 853–858.

    Article  CAS  Google Scholar 

  25. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16: 720–728.

    Article  CAS  Google Scholar 

  26. Tonon G, Gehlhaus KS, Yonescu R, Kaye FJ, Kirsch IR . Multiple reciprocal translocations in salivary gland mucoepidermoid carcinomas. Cancer Genet Cytogenet 2004; 152: 15–22.

    Article  CAS  Google Scholar 

  27. Macville M, Schrock E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer Res 1999; 59: 141–150.

    CAS  Google Scholar 

  28. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23: 4051–4060.

    Article  CAS  Google Scholar 

  29. Bao L, Dunham K, Lucas K . MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother 2011; 60: 1299–1307.

    Article  CAS  Google Scholar 

  30. Adair SJ, Hogan KT . Treatment of ovarian cancer cell lines with 5-aza-2'-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 2009; 58: 589–601.

    Article  CAS  Google Scholar 

  31. Ulybina YM, Kuligina ES, Mitiushkina NV, Sherina NY, Baholdin DV, Voskresenskiy DA et al. Distribution of coding apoptotic gene polymorphisms in women with extreme phenotypes of breast cancer predisposition and tolerance. Tumori 2011; 97: 248–251.

    Article  Google Scholar 

  32. Kang HG, Lee SJ, Chae MH, Lee WK, Cha SI, Kim CH et al. Identification of polymorphisms in the XIAP gene and analysis of association with lung cancer risk in a Korean population. Cancer Genet Cytogenet 2008; 180: 6–13.

    Article  CAS  Google Scholar 

  33. Holcik M . Translational upregulation of the X-linked inhibitor of apoptosis. Ann N Y Acad Sci 2003; 1010: 249–258.

    Article  CAS  Google Scholar 

  34. Riley A, Jordan LE, Holcik M . Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress. Nucleic Acids Res 2010; 38: 4665–4674.

    Article  CAS  Google Scholar 

  35. Ku G, McManus MT . Behind the scenes of a small RNA gene-silencing pathway. Hum Gene Ther 2008; 19: 17–26.

    Article  CAS  Google Scholar 

  36. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E et al. Inhibition of translational initiation by Let-7 microRNA in human cells. Science 2005; 309: 1573–1576.

    Article  CAS  Google Scholar 

  37. Humphreys DT, Westman BJ, Martin DIK, Preiss T . MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci USA 2005; 102: 16961–16966.

    Article  CAS  Google Scholar 

  38. Wang BB, Love TM, Call ME, Doench JG, Novina CD . Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 2006; 22: 553–560.

    Article  CAS  Google Scholar 

  39. Petersen CP, Bordeleau ME, Pelletier J, Sharp PA . Short RNAs repress translation after initiation in mammalian cells. Mol Cell 2006; 21: 533–542.

    Article  CAS  Google Scholar 

  40. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312: 75–79.

    Article  CAS  Google Scholar 

  41. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005; 102: 13944–13949.

    Article  CAS  Google Scholar 

  42. Liu L, Chen L, Xu Y, Li R, Du X . MicroRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem Biophys Res Commun 2010; 400: 236–240.

    Article  CAS  Google Scholar 

  43. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X et al. miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer's disease, inhibits bcl2 translation. Brain Res Bull 2009; 80: 268–273.

    Article  CAS  Google Scholar 

  44. Zhu W, Shan X, Wang T, Shu Y, Liu P . miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int J Cancer 2010; 127: 2520–2529.

    Article  CAS  Google Scholar 

  45. Chhabra R, Adlakha YK, Hariharan M, Scaria V, Saini N . Upregulation of miR-23a-27a-24-2 cluster induces caspase-dependent and -independent apoptosis in human embryonic kidney cells. PLoS One 2009; 4: e5848.

    Article  Google Scholar 

  46. Yoon S, Choi YC, Lee S, Jeong Y, Yoon J, Baek K . Induction of growth arrest by miR-542-3p that targets survivin. FEBS Lett 2010; 584: 4048–4052.

    Article  CAS  Google Scholar 

  47. Eckelman BP, Salvesen GS, Scott FL . Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 2006; 7: 988–994.

    Article  CAS  Google Scholar 

  48. Niederer F, Trenkmann M, Ospelt C, Karouzakis E, Neidhart M, Stanczyk J et al. Downregulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum 2012; 64: 1771–1779.

    Article  CAS  Google Scholar 

  49. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  Google Scholar 

  50. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  Google Scholar 

  51. Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. Plos One 2010; 5: e9429.

    Article  Google Scholar 

  52. Walker JC, Harland RM . MicroRNA-24a is required to repress apoptosis in the developing neural retina. Genes Dev 2009; 23: 1046–1051.

    Article  CAS  Google Scholar 

  53. Medina PP, Slack FJ . MicroRNAs and cancer: an overview. Cell Cycle 2008; 7: 2485–2492.

    Article  CAS  Google Scholar 

  54. Agirre X, Vilas-Zornoza A, Jimenez-Velasco A, Martin-Subero JI, Cordeu L, Garate L et al. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69: 4443–4453.

    Article  CAS  Google Scholar 

  55. Maragkakis M, Reczko M, Simossis VA, Alexiou P, Papadopoulos GL, Dalamagas T et al. DIANA-microT web server: elucidating microRNA functions through target prediction. Nucleic Acids Res 2009 (Web Server issue): W273–W276.

  56. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  Google Scholar 

  57. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS . Human microRNA targets. PLoS Biol. 2004; 2: e363.

    Article  Google Scholar 

  58. Kruger J, Rehmsmeier M . RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34 (Web Server issue): W451–W454.

    Article  Google Scholar 

  59. Padilla-Nash HM, Barenboim-Stapleton L, Difilippantonio MJ, Ried T . Spectral karyotyping analysis of human and mouse chromosomes. Nat Protoc 2006; 1: 3129–3142.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Steven A Rosenberg for reviewing the manuscript. This work was supported by the National Institutes of Health, Intramural Research Program (TR and KFK) and NIH Postdoctoral Cancer Research Training Awards (YX, JC, EW and KSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K F Kwong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Tobin, L., Camps, J. et al. MicroRNA-24 regulates XIAP to reduce the apoptosis threshold in cancer cells. Oncogene 32, 2442–2451 (2013). https://doi.org/10.1038/onc.2012.258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.258

Keywords

This article is cited by

Search

Quick links