Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion

Abstract

We previously reported reduced expression of Sox4 in metastatic melanoma and its role in suppression of cell migration and invasion through inhibition of nuclear factor (NF)-κB p50. Sox4 can also bind to the promoter sequence of Dicer, a microRNA (miRNA) biogenesis factor. Interestingly, altered expression of Dicer was also observed in cancers. However, the potential mechanisms that regulate Dicer expression and its potential significance in melanoma progression are unknown. Here, we studied the regulation of Dicer expression by Sox4 and its role in suppression of melanoma invasion. Our data showed that Sox4 positively regulates Dicer expression by binding to its promoter sequences and enhancing its activity. We found that knockdown of Dicer enhances the matrigel invasion of melanoma cells by at least twofold. In addition, we revealed that overexpression of exogenous Dicer reverts the enhanced melanoma cell invasion upon Sox4 knockdown. Furthermore, we examined the expression of Dicer protein in a large set of melanocytic lesions (n=514) at different stages by tissue microarray and found that Dicer expression is inversely correlated with melanoma progression (P<0.0001). Consistently, reduced Dicer expression was correlated with a poorer overall and disease-specific 5-year survival of patients (P=0.015 and 0.0029, respectively). In addition, we found a significant correlation between expression of Sox4 and Dicer proteins in melanoma biopsies (P=0.009), further indicating the regulation of Dicer expression by Sox4. Finally, we revealed that knockdown of Sox4 induces a major change in the expression pattern of miRNAs in melanoma cells, mainly due to reduced expression of Dicer. Our results pinpoint the regulation of Dicer expression by Sox4 in melanoma and the critical role of Dicer in suppression of melanoma invasion. Our findings on Sox4-regulated miRNA biogenesis pathway may aid toward the development of novel targeted therapeutic approaches for melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  2. Chin L, Garraway LA, Fisher DE . Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20: 2149–2182.

    Article  CAS  PubMed  Google Scholar 

  3. Kim VN . MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6: 376–385.

    Article  CAS  PubMed  Google Scholar 

  4. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  6. Visone R, Croce CM . MiRNAs and cancer. Am J Pathol 2009; 174: 1131–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J et al. Dicer1 functions as a haploinsufficient tumor suppressor. Gene Dev 2009; 23: 2700–2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lambertz I, Nittner D, Mestdagh P, Denecker G, Vandesompele J, Dyer MA et al. Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo. Cell Death Differ 2010; 17: 633–641.

    Article  CAS  PubMed  Google Scholar 

  9. Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 2009; 136: e2301–e2304.

    Article  Google Scholar 

  10. de Bont JM, Kros JM, Passier MM, Reddingius RE, Sillevis Smitt PA, Luider TM et al. Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis. Neuro Oncol 2008; 10: 648–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu PB, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Research 2006; 66: 4011–4019.

    Article  CAS  PubMed  Google Scholar 

  12. Aaboe M, Birkenkamp-Demtroder K, Wiuf C, Sorensen FB, Thykjaer T, Sauter G et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res 2006; 66: 3434–3442.

    Article  CAS  PubMed  Google Scholar 

  13. Liu P, Ramachandran S, Ali Seyed M, Scharer CD, Laycock N, Dalton WB et al. Sex-determining region Y box 4 is a transforming oncogene in human prostate cancer cells. Cancer Res 2006; 66: 4011–4019.

    Article  CAS  PubMed  Google Scholar 

  14. Pramoonjago P, Baras AS, Moskaluk CA . Knockdown of Sox4 expression by RNAi induces apoptosis in ACC3 cells. Oncogene 2006; 25: 5626–5639.

    Article  CAS  PubMed  Google Scholar 

  15. Ahn SG, Kim HS, Jeong SW, Kim BE, Rhim H, Shim JY et al. Sox-4 is a positive regulator of Hep3B and HepG2 cells' apoptosis induced by prostaglandin (PG)A(2) and delta(12)-PGJ(2). Experimental Mol Med 2002; 34: 243–249.

    Article  CAS  Google Scholar 

  16. Hur EH, Hur W, Choi JY, Kim IK, Kim HY, Yoon SK et al. Functional identification of the pro-apoptotic effector domain in human Sox4. Biochemical Biophys Res Commun 2004; 325: 59–67.

    Article  CAS  Google Scholar 

  17. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 2009; 106: 3788–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jafarnejad SM, Wani AA, Martinka M, Li G . Prognostic significance of Sox4 expression in human cutaneous melanoma and its role in cell migration and invasion. Am J Pathol 2010; 177: 2741–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scharer CD, McCabe CD, Ali-Seyed M, Berger MF, Bulyk ML, Moreno CS . Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells. Cancer Res 2009; 69: 709–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL et al. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008; 27: 5578–5589.

    Article  CAS  PubMed  Google Scholar 

  21. Castillo SD, Matheu A, Mariani N, Carretero J, Lopez-Rios F, Lovell-Badge R et al. Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res 2012; 72: 176–186.

    Article  CAS  PubMed  Google Scholar 

  22. Wotton D, Lake RA, Farr CJ, Owen MJ . The high mobility group transcription factor, SOX4, transactivates the human CD2 enhancer. J Biol Chem 1995; 270: 7515–7522.

    Article  CAS  PubMed  Google Scholar 

  23. Vandewetering M, Oosterwegel M, Vannorren K, Clevers H . Sox-4, an sry-like HMG box protein, is a transcriptional activator in lymphocytes. Embo J 1993; 12: 3847–3854.

    Article  CAS  Google Scholar 

  24. Su XH, Chakravarti D, Cho MS, Liu LZ, Gi YJ, Lin YL et al. TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 2010; 467: 986–U168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. A microRNA targeting Dicer for metastasis control. Cell 2010; 141: 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  26. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faggad A, Budczies J, Tchernitsa O, Darb-Esfahani S, Sehouli J, Muller BM et al. Prognostic significance of Dicer expression in ovarian cancer-link to global microRNA changes and oestrogen receptor expression. J Pathol 2010; 220: 382–391.

    CAS  PubMed  Google Scholar 

  28. Karube Y, Tanaka H, Osada H, Tomida S, Tatematsu Y, Yanagisawa K et al. Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 2005; 96: 111–115.

    Article  CAS  PubMed  Google Scholar 

  29. Wu JF, Shen W, Liu NZ, Zeng GL, Yang M, Zuo GQ et al. Down-regulation of Dicer in hepatocellular carcinoma. Med Oncol 2011; 28: 804–809.

    Article  CAS  PubMed  Google Scholar 

  30. Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P et al. Expression levels of the microRNA processing enzymes Drosha and Dicer in epithelial skin cancer. Cancer Invest 2010; 28: 649–653.

    Article  CAS  PubMed  Google Scholar 

  31. Faber C, Horst D, Hlubek F, Kirchner T . Overexpression of Dicer predicts poor survival in colorectal cancer. Eur J Cancer 2011; 47: 1414–1419.

    Article  CAS  PubMed  Google Scholar 

  32. Chiosea S, Jelezcova E, Chandran U, Acquafondata M, McHale T, Sobol RW et al. Up-regulation of Dicer, a component of the microRNA machinery, in prostate adenocarcinoma. Am J Pathol 2006; 169: 1812–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ma Z, Swede H, Cassarino D, Fleming E, Fire A, Dadras SS . Up-regulated Dicer expression in patients with cutaneous melanoma. PLoS One 2011; 6: e20494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta GP, Massague J . Cancer metastasis: building a framework. Cell 2006; 127: 679–695.

    Article  CAS  PubMed  Google Scholar 

  35. Spatz A, Batist G, Eggermont AMM . The biology behind prognostic factors of cutaneous melanoma. Curr Opin Oncol 2010; 22: 163–168.

    Article  CAS  PubMed  Google Scholar 

  36. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 2009; 106: 3788–3793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hunt SM, Clarke CL . Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. Biol Reprod 1999; 61: 476–481.

    Article  CAS  PubMed  Google Scholar 

  38. Graham JD, Hunt SM, Tran N, Clarke CL . Regulation of the expression and activity by progestins of a member of the SOX gene family of transcriptional modulators. J Mol Endocrinol 1999; 22: 295–304.

    Article  CAS  PubMed  Google Scholar 

  39. Wang Y, Li G . ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells. J Biol Chem 2006; 281: 11887–11893.

    Article  CAS  PubMed  Google Scholar 

  40. Levy C, Khaled M, Robinson KC, Veguilla RA, Chen PH, Yokoyama S et al. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes. Cell 2010; 141: 994–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wong RP, Ng P, Dedhar S, Li G . The role of integrin-linked kinase in melanoma cell migration, invasion, and tumor growth. Mol Cancer Ther 2007; 6: 1692–1700.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Ian J MacRae for providing the pCDNA3-Flag-Dicer construct, Stephanie Smith, Kate Orchard, Ronald Wong, Ladan Fazli, Larry Tan, Cecilia Sjoestroem, Liang L Liu and Yabin Cheng for technical assistance and Drs Michael Cox, Aziz Ghahary and Vincent Duronio for helpful discussions. This work was supported by grants from the Canadian Institutes of Health Research (MOP-93810, MOP-110974 and CCI-117958) and the Canadian Dermatology Foundation to GL. SMJ is a recipient of University of British Columbia Graduate Fellowship. SMJ and GSA are recipients of Canadian Institutes of Health Research—Skin Research Training Centre Trainee Awards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafarnejad, S., Ardekani, G., Ghaffari, M. et al. Sox4-mediated Dicer expression is critical for suppression of melanoma cell invasion. Oncogene 32, 2131–2139 (2013). https://doi.org/10.1038/onc.2012.239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.239

Keywords

This article is cited by

Search

Quick links