Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription

Abstract

The transcription factor c-Myc has a critical role in cell proliferation and growth. The control of ribosome biogenesis by c-Myc through the regulation of transcription mediated by all three RNA polymerases is essential for c-Myc-driven proliferation. Specifically, in the nucleolus, c-Myc has been shown to be recruited to ribosomal DNA and activate RNA polymerase (pol) I-mediated transcription of ribosomal RNA (rRNA) genes. In addition, c-Myc accumulates in nucleoli upon inhibition of the proteasome, suggesting nucleolar localization also has a role in c-Myc proteolysis. Nucleophosmin (NPM), a predominantly nucleolar protein, is also critical in ribosome biogenesis and, like c-Myc, is found overexpressed in many types of tumors. Previously, we demonstrated that NPM directly interacts with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Here, we show that NPM is necessary for the localization of c-Myc protein to nucleoli, whereas c-Myc nucleolar localization is independent of p53, Mdm2 and ARF. Conversely, high transient NPM expression enhances c-Myc nucleolar localization, leading to increased c-Myc proteolysis. In addition, NPM is necessary for the ability of c-Myc to induce rRNA synthesis in the nucleolus, and constitutive NPM overexpression stimulates c-Myc-mediated rRNA synthesis. Taken together, these results demonstrate an essential role for NPM in c-Myc nucleolar localization and c-Myc-mediated rDNA transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  2. Albihn A, Johnsen JI, Henriksson MA . MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107: 163–224.

    Article  CAS  Google Scholar 

  3. Montanaro L, Trere D, Derenzini M . Nucleolus, ribosomes, and cancer. Am J Pathol. 2008; 173: 301–310.

    Article  CAS  Google Scholar 

  4. Sirri V, Urcuqui-Inchima S, Roussel P, Hernandez-Verdun D . Nucleolus: the fascinating nuclear body. Histochem Cell Biol 2008; 129: 13–31.

    Article  CAS  Google Scholar 

  5. Dai MS, Lu H . Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J Cell Biochem 2008; 105: 670–677.

    Article  CAS  Google Scholar 

  6. Arabi A, Wu S, Ridderstrale K, Bierhoff H, Shiue C, Fatyol K et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 2005; 7: 303–310.

    Article  CAS  Google Scholar 

  7. Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 2005; 7: 311–318.

    Article  CAS  Google Scholar 

  8. Grewal SS, Li L, Orian A, Eisenman RN, Edgar BA . Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 2005; 7: 295–302.

    Article  CAS  Google Scholar 

  9. Poortinga G, Wall M, Sanij E, Siwicki K, Ellul J, Brown D et al. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res 2011; 39: 3267–3281.

    Article  CAS  Google Scholar 

  10. Shiue CN, Berkson RG, Wright AP . c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 2009; 28: 1833–1842.

    Article  CAS  Google Scholar 

  11. Sanders JA, Gruppuso PA . Nucleolar localization of hepatic c-Myc: a potential mechanism for c-Myc regulation. Biochem Biophys Acta 2005; 1743: 141–150.

    Article  CAS  Google Scholar 

  12. Arabi A, Rustum C, Hallberg E, Wright AP . Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J Cell Sci 2003; 116 (Pt 9): 1707–1717.

    Article  CAS  Google Scholar 

  13. Welcker M, Orian A, Grim JE, Eisenman RN, Clurman BE . A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol 2004; 14: 1852–1857.

    Article  CAS  Google Scholar 

  14. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. Embo J 2004; 23: 2116–2125.

    Article  CAS  Google Scholar 

  15. Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  Google Scholar 

  16. Grisendi S, Mecucci C, Falini B, Pandolfi PP . Nucleophosmin and cancer. Nat Rev Cancer. 2006; 6: 493–505.

    Article  CAS  Google Scholar 

  17. Frehlick LJ, Eirin-Lopez JM, Ausio J . New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays 2007; 29: 49–59.

    Article  CAS  Google Scholar 

  18. Okuwaki M . The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem 2008; 143: 441–448.

    Article  CAS  Google Scholar 

  19. Colombo E, Alcalay M, Pelicci PG . Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30: 2595–2609.

    Article  CAS  Google Scholar 

  20. Murano K, Okuwaki M, Hisaoka M, Nagata K . Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 2008; 28: 3114–3126.

    Article  CAS  Google Scholar 

  21. Li Z, Boone D, Hann SR . Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc Natl Acad Sci USA 2008; 105: 18794–18799.

    Article  CAS  Google Scholar 

  22. Li J, Sejas DP, Burma S, Chen DJ, Pang Q . Nucleophosmin suppresses oncogene-induced apoptosis and senescence and enhances oncogenic cooperation in cells with genomic instability. Carcinogenesis 2007; 28: 1163–1170.

    Article  CAS  Google Scholar 

  23. Li Z, Hann SR . The Myc-nucleophosmin-ARF network: a complex web unveiled. Cell Cycle 2009; 8: 2703–2707.

    Article  CAS  Google Scholar 

  24. Qi Y, Gregory MA, Li Z, Brousal JP, West K, Hann SR . p19ARF directly and differentially controls the functions of c-Myc independently of p53. Nature 2004; 431: 712–717.

    Article  CAS  Google Scholar 

  25. Korgaonkar C, Zhao L, Modestou M, Quelle DE . ARF function does not require p53 stabilization or Mdm2 relocalization. Mol Cell Biol 2002; 22: 196–206.

    Article  CAS  Google Scholar 

  26. Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M et al. Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 2008; 181: 913–920.

    Article  CAS  Google Scholar 

  27. Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG, Colombo E . Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol 2008; 182: 19–26.

    Article  CAS  Google Scholar 

  28. Salghetti SE, Kim SY, Tansey WP . Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 1999; 18: 717–726.

    Article  CAS  Google Scholar 

  29. Gregory MA, Hann SR . c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt's lymphoma cells. Mol Cell Biol 2000; 20: 2423–2435.

    Article  CAS  Google Scholar 

  30. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6: 308–318.

    Article  CAS  Google Scholar 

  31. Boisvert FM, Ahmad Y, Gierlinski M, Charriere F, Lamont D, Scott M et al. A quantitative spatial proteomics analysis of proteome turnover in human cells. Mol Cell Proteomics 2011, e-pub ahead of print 21 September 2011; doi:10.1074/mcp.M111.011429.

    Article  Google Scholar 

  32. Bouche G, Gas N, Prats H, Baldin V, Tauber JP, Teissie J et al. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing G0–G1 transition. Proc Natl Acad Sci USA 1987; 84: 6770–6774.

    Article  CAS  Google Scholar 

  33. Stoldt S, Wenzel D, Schulze E, Doenecke D, Happel N . G1 phase-dependent nucleolar accumulation of human histone H1x. Biol Cell 2007; 99: 541–552.

    Article  CAS  Google Scholar 

  34. Spotts GD, Patel SV, Xiao Q, Hann SR . Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 1997; 17: 1459–1468.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C Pfarr for pCMV14-NPM-Flag vector, S McMahon for pSUPER retro vector, E Lee for the anti-HA (12CA5), W Tansey for pCGN-HA-Myc1-220 and pCGN-HA-Myc221-439 vectors, E Colombo and PG Pelicci for NPM−/−p53−/− MEFs, G Zambetti for ARF−/−p53−/− MEFs, E Ruley for p53−/− MEFs and J Sedivy for c-myc−/− cells. This work was supported by grants RO1 CA109586 and CA125760 from NCI to SRH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Hann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Hann, S. Nucleophosmin is essential for c-Myc nucleolar localization and c-Myc-mediated rDNA transcription. Oncogene 32, 1988–1994 (2013). https://doi.org/10.1038/onc.2012.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.227

Keywords

This article is cited by

Search

Quick links