Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of glycolysis and the Warburg effect by estrogen-related receptors

Abstract

Cancer cells typically display altered glucose metabolism characterized by a preference of aerobic glycolysis, known as the Warburg effect, which facilitates cell proliferation. Hypoxia-inducible factor (HIF) and oncoprotein Myc are two prominent transcription factors that drive glycolysis. Previously, we reported that the estrogen-related receptors (ERRs) act as cofactors of HIF and enhance HIF-dependent transcription of glycolytic genes under hypoxia. ERRs are orphan nuclear receptors and key regulators of energy metabolism by orchestrating mitochondrial biogenesis, fatty acid oxidation (FAO) and oxidative phosphorylation. Here, we show that ERRs also stimulate glycolysis under normoxia. ERRs directly bind to and activate promoters of many genes encoding glycolytic enzymes, and the ERR-binding sites in such promoters are essential for ERR-mediated transcriptional activation. ERRs interact with Myc, and the two factors synergistically activate transcription of glycolytic genes. Furthermore, overexpression of ERRs increases glycolytic gene expression and lactate production. Conversely, depletion of ERRs in cancer cells reduces expression of glycolytic genes and glucose uptake, resulting in decreased aerobic glycolysis and cell growth. Taken together, these results suggest that ERRs are important transcriptional activators of the glycolytic pathway and contribute to the Warburg effect in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  Google Scholar 

  2. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  3. Locasale JW, Grassian AR, Melman T, Lyssiotis CA, Mattaini KR, Bass AJ et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat Genet 2011; 43: 869–874.

    Article  CAS  Google Scholar 

  4. Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346–350.

    Article  CAS  Google Scholar 

  5. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  Google Scholar 

  6. Hsu PP, Sabatini DM . Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703–707.

    Article  CAS  Google Scholar 

  7. Dang CV, Kim JW, Gao P, Yustein J . The interplay between MYC and HIF in cancer. Nat Rev Cancer 2008; 8: 51–56.

    Article  CAS  Google Scholar 

  8. Tennant DA, Durán RV, Gottlieb E . Targeting metabolic transformation for cancer therapy. Nat Rev Cancer 2010; 10: 267–277.

    Article  CAS  Google Scholar 

  9. Levine AJ, Puzio-Kuter AM . The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 2010; 330: 1340–1344.

    Article  CAS  Google Scholar 

  10. Semenza GL . Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 2009; 19: 12–16.

    Article  CAS  Google Scholar 

  11. Kim JW, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    Article  Google Scholar 

  12. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3: 187–197.

    Article  CAS  Google Scholar 

  13. Semenza GL . Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochem Biophys Acta 2011; 1813: 1263–1268.

    Article  CAS  Google Scholar 

  14. Kim JW, Zeller KI, Wang Y, Jegga AG, Aronow BJ, O'Donnell KA et al. Evaluation of myc E-box phylogenetic footprints in glycolytic genes by chromatin immunoprecipitation assays. Mol Cell Biol 2004; 24: 5923–5936.

    Article  CAS  Google Scholar 

  15. Ao A, Wang H, Kamarajugadda S, Lu J . Involvement of estrogen-related receptors in transcriptional response to hypoxia and growth of solid tumors. Proc Natl Acad Sci USA 2008; 105: 7821–7826.

    Article  CAS  Google Scholar 

  16. Giguère V . Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev 2008; 29: 677–696.

    Article  Google Scholar 

  17. Hock MB, Kralli A . Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 2009; 71: 177–203.

    Article  CAS  Google Scholar 

  18. Hue L, Taegtmeyer H . The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 2009; 297: E578–E591.

    Article  CAS  Google Scholar 

  19. Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP . PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 2005; 25: 10684–10694.

    Article  CAS  Google Scholar 

  20. Zhang Y, Ma K, Sadana P, Chowdhury F, Gaillard S, Wang F et al. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression. J Biol Chem 2006; 281: 39897–39906.

    Article  CAS  Google Scholar 

  21. Araki M, Motojima K . Identification of ERRalpha as a specific partner of PGC-1alpha for the activation of PDK4 gene expression in muscle. FEBS J 2006; 273: 1669–1680.

    Article  CAS  Google Scholar 

  22. Dufour BJ, Wilson JM, Huss DP, Kelly WA, Alaynick M, Downes RM et al. Genone-wide orchestration of cardiac functions by orphan nucler receptors ERRα and γ. Cell Metab 2007; 5: 345–356.

    Article  CAS  Google Scholar 

  23. Deblois JA, Hall MC, Perry J, Laganière M, Ghahremani M, Park M et al. Genome-wide identification of direct target genes implicates estrogen-related receptor α as a determinant of breast cancer heterogeneity. Cancer Res 2009; 69: 6149–6157.

    Article  CAS  Google Scholar 

  24. Charest-Marcotte CR, Dufour BJ, Wilson AM, Tremblay LJ, Eichner DH, Arlow VK et al. The homeobox protein Prox1 is a negative modulator of ERRα/PGC-1α bioenergetic functions. Genes Dev 2010; 24: 537–542.

    Article  CAS  Google Scholar 

  25. Tennessen JM, Baker KD, Lam G, Evans J, Thummel CS . The Drosophila estrogen-related receptor directs a metabolic switch that supports developmental growth. Cell Metab 2011; 13: 139–148.

    Article  CAS  Google Scholar 

  26. Ariazi EA, Jordan VC . Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Curr Top Med Chem 2006; 6: 203–215.

    Article  CAS  Google Scholar 

  27. Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP . The metabolic regulator ERRα, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer Cell 2011; 20: 500–510.

    Article  CAS  Google Scholar 

  28. Stein RA, Chang CY, Kazmin DA, Way J, Schroeder T, Wergin M et al. Estrogen-related receptor α is critical for the growth of estrogen receptor-negative breast cancer. Cancer Res 2008; 68: 8805–8812.

    Article  CAS  Google Scholar 

  29. Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 2007; 292: C125–C136.

    Article  CAS  Google Scholar 

  30. Hardie DG . AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895–1908.

    Article  CAS  Google Scholar 

  31. Jose C, Bellance N, Rossignol R . Choosing between glycolysis and oxidative phosphorylation: a tumor's dilemma? Biochem Biophys Acta 2011; 1807: 552–561.

    CAS  PubMed  Google Scholar 

  32. Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J et al. mir-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab 2010; 12: 352–361.

    Article  CAS  Google Scholar 

  33. Li F, Wang Y, Zeller KI, Potter JJ, Wonsey DR, O'Donnell KA et al. Myc stimulates nuclearly encoded mitochondrial genes and mitochondrial biogenesis. Mol Cell Biol 2005; 25: 6225–6234.

    Article  CAS  Google Scholar 

  34. Dang CV, Le A, Gao P . MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 2009; 15: 6479–6483.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Cancer Institute (R01CA137021) and Florida Bankhead-Coley Cancer Research Program (09BN-12-23092 and 2BT01).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, Q., Lin, T., Kamarajugadda, S. et al. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene 32, 2079–2086 (2013). https://doi.org/10.1038/onc.2012.221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.221

Keywords

This article is cited by

Search

Quick links