Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4

Abstract

The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5′-RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon, whereas two indolocarbazole-derived inhibitors of cyclin-dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kDa wild-type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72 kDa were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Frodin M, Gammeltoft S . Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 1999; 151: 65–77.

    Article  CAS  Google Scholar 

  2. Hauge C, Frodin M . RSK and MSK in MAP kinase signalling. J Cell Sci 2006; 119: 3021–3023.

    Article  CAS  Google Scholar 

  3. Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P . Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem 1998; 273: 1496–1505.

    Article  CAS  Google Scholar 

  4. Anjum R, Blenis J . The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 2008; 9: 747–758.

    Article  CAS  Google Scholar 

  5. Kohn M, Hameister H, Vogel M, Kehrer-Sawatzki H . Expression pattern of the Rsk2, Rsk4 and Pdk1 genes during murine embryogenesis. Gene Expr Patterns 2003; 3: 173–177.

    Article  CAS  Google Scholar 

  6. Bignone PA, Lee KY, Liu Y, Emilion G, Finch J, Soosay AE et alRPS6KA2 a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 2007; 26: 683–700.

    Article  CAS  Google Scholar 

  7. Lin H, Morin PJ . A novel homozygous deletion at chromosomal band 6q27 in an ovarian cancer cell line delineates the position of a putative tumor suppressor gene. Cancer Lett 2001; 173: 63–70.

    Article  CAS  Google Scholar 

  8. Yntema HG, van den HB, Kissing J, van DG, Poppelaars F, Chelly J et alA novel ribosomal S6-kinase (RSK4; RPS6KA6) is commonly deleted in patients with complex X-linked mental retardation. Genomics 1999; 62: 332–343.

    Article  CAS  Google Scholar 

  9. Myers AP, Corson LB, Rossant J, Baker JC . Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-RAS-extracellular signal-regulated kinase signaling. Mol Cell Biol 2004; 24: 4255–4266.

    Article  CAS  Google Scholar 

  10. Dummler BA, Hauge C, Silber J, Yntema HG, Kruse LS, Kofoed B et alFunctional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J Biol Chem 2005; 280: 13304–13314.

    Article  Google Scholar 

  11. Thakur A, Rahman KW, Wu J, Bollig A, Biliran H, Lin X et alAberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer. Mol Cancer Res 2007; 5: 171–181.

    Article  CAS  Google Scholar 

  12. Niehof M, Borlak J . RSK4 and PAK5 are novel candidate genes in diabetic rat kidney and brain. Mol Pharmacol 2005; 67: 604–611.

    Article  CAS  Google Scholar 

  13. Thakur A, Xu H, Wang Y, Bollig A, Biliran H, Liao JD . The role of X-linked genes in breast cancer. Breast Cancer Res Treat 2005; 93: 135–143.

    Article  CAS  Google Scholar 

  14. Thakur A, Bollig A, Wu J, Liao DJ . Gene expression profiles in primary pancreatic tumors and metastatic lesions of Ela-c-myc transgenic mice. Mol Cancer 2008; 7 doi:10.1086/1476-4598-7-11.

  15. Thakur A, Sun Y, Bollig A, Wu J, Biliran H, Banerjee S et alAnti-invasive and antimetastatic activities of ribosomal protein S6 kinase 4 in breast cancer cells. Clin Cancer Res 2008; 14: 4427–4436.

    Article  CAS  Google Scholar 

  16. Dewdney SB, Rimel BJ, Thaker PH, Thompson DM, Schmidt A, Huettner P et alAberrant methylation of the X-linked ribosomal S6 kinase RPS6KA6 (RSK4) in endometrial cancers. Clin Cancer Res 2011; 17: 2120–2129.

    Article  CAS  Google Scholar 

  17. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et alA large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 2004; 428: 431–437.

    Article  CAS  Google Scholar 

  18. Lopez-Vicente L, Pons B, Coch L, Teixido C, Hernandez-Losa J, Armengol G et alRSK4 inhibition results in bypass of stress-induced and oncogene-induced senescence. Carcinogenesis 2011; 32: 470–476.

    Article  CAS  Google Scholar 

  19. Lopez-Vicente L, Armengol G, Pons B, Coch L, Argelaguet E, Lleonart M et alRegulation of replicative and stress-induced senescence by RSK4, which is down-regulated in human tumors. Clin Cancer Res 2009; 15: 4546–4553.

    Article  CAS  Google Scholar 

  20. LLeonart ME, Vidal F, Gallardo D, az-Fuertes M, Rojo F, Cuatrecasas M et alNew p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 2006; 16: 603–608.

    CAS  Google Scholar 

  21. Bender C, Ullrich A . PRKX TTBK2 and RSK4 expression causes sunitinib resistance in kidney carcinoma- and melanoma cell lines. Int J Cancer 2011, e-pub ahead of print; doi:10.1002/ijc.26486.

    Article  CAS  Google Scholar 

  22. Liao D, Thakur A, Wu J, Biliran H, Sarkar FH . Perspectives on c-Myc, Cyclin D1, and their interaction in cancer formation, progression, and response to chemotherapy. Crit Rev Oncog 2007; 13: 93–158.

    Article  Google Scholar 

  23. Liao DJ, Dickson RB . c-Myc in breast cancer. Endocr Relat Cancer 2000; 7: 143–164.

    Article  CAS  Google Scholar 

  24. Liao JD, Adsay NV, Khannani F, Grignon D, Thakur A, Sarkar FH . Histological complexities of pancreatic lesions from transgenic mouse models are consistent with biological and morphological heterogeneity of human pancreatic cancer. Histol Histopathol 2007; 22: 661–676.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Biliran H, Wang Y, Banerjee S, Xu H, Heng H, Thakur A et alOverexpression of cyclin D1 promotes tumor cell growth and confers resistance to cisplatin-mediated apoptosis in an elastase-myc transgene-expressing pancreatic tumor cell line. Clin Cancer Res 2005; 11: 6075–6086.

    Article  CAS  Google Scholar 

  26. Biliran H, Banerjee S, Thakur A, Sarkar FH, Bollig A, Ahmed F et alc-Myc-induced chemosensitization is mediated by suppression of cyclin D1 expression and nuclear factor-kappa B activity in pancreatic cancer cells. Clin Cancer Res 2007; 13: 2811–2821.

    Article  CAS  Google Scholar 

  27. Yang M, Sun Y, Ma L, Wang C, Wu JM, Bi A et alComplex alternative splicing of the smarca2 gene suggests the importance of smarca2-B variants. J Cancer 2011; 2: 386–400.

    Article  Google Scholar 

  28. Sun Y, Li YX, Wu HJ, Wu SH, Wang YA, Luo DZ et alEffects of an Indolocarbazole-derived CDK4 inhibitor on breast cancer cells. J Cancer 2011; 2: 36–51.

    Article  CAS  Google Scholar 

  29. El-Kady A, Sun Y, Li YX, Liao DJ . Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-kappaB and Bcl-2 families. J Carcinog 2011; 10: 24.

    Article  CAS  Google Scholar 

  30. Wang C, Lisanti MP, Liao DJ . Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology. Cell Cycle 2011; 10: 57–67.

    Article  CAS  Google Scholar 

  31. Fitzgerald KD, Semler BL . Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochem Biophys Acta 2009; 1789: 518–528.

    CAS  PubMed  Google Scholar 

  32. Kozak M . Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361: 13–37.

    Article  CAS  Google Scholar 

  33. Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE . Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 2010; 30: 285–293.

    Article  CAS  Google Scholar 

  34. Iacono M, Mignone F, Pesole G . uAUG and uORFs in human and rodent 5'untranslated mRNAs. Gene 2005; 349: 97–105.

    Article  CAS  Google Scholar 

  35. Ivanov IP, Atkins JF, Michael AJ . A profusion of upstream open reading frame mechanisms in polyamine-responsive translational regulation. Nucleic Acids Res 2010; 38: 353–359.

    Article  CAS  Google Scholar 

  36. Tanner DR, Cariello DA, Woolstenhulme CJ, Broadbent MA, Buskirk AR . Genetic identification of nascent peptides that induce ribosome stalling. J Biol Chem 2009; 284: 34809–34818.

    Article  CAS  Google Scholar 

  37. Nyiko T, Sonkoly B, Merai Z, Benkovics AH, Silhavy D . Plant upstream ORFs can trigger nonsense-mediated mRNA decay in a size-dependent manner. Plant Mol Biol 2009; 71: 367–378.

    Article  CAS  Google Scholar 

  38. Wethmar K, Smink JJ, Leutz A . Upstream open reading frames: molecular switches in (patho)physiology. Bioessays 2010; 32: 885–893.

    Article  CAS  Google Scholar 

  39. Chatterjee S, Pal JK . Role of 5'- and 3'-untranslated regions of mRNAs in human diseases. Biol Cell 2009; 101: 251–262.

    Article  CAS  Google Scholar 

  40. Le Quesne JP, Spriggs KA, Bushell M, Willis AE . Dysregulation of protein synthesis and disease. J Pathol 2010; 220: 140–151.

    CAS  PubMed  Google Scholar 

  41. Kozak M . Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function. Gene 2008; 423: 108–115.

    Article  CAS  Google Scholar 

  42. Kozak M . Lessons (not) learned from mistakes about translation. Gene 2007; 403: 194–203.

    Article  CAS  Google Scholar 

  43. Kozak M . Some thoughts about translational regulation: forward and backward glances. J Cell Biochem 2007; 102: 280–290.

    Article  CAS  Google Scholar 

  44. Kozak M . Rethinking some mechanisms invoked to explain translational regulation in eukaryotes. Gene 2006; 382: 1–11.

    Article  CAS  Google Scholar 

  45. Kozak M . A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 2005; 33: 6593–6602.

    Article  CAS  Google Scholar 

  46. Vila-Perello M, Muir TW . Biological applications of protein splicing. Cell 2010; 143: 191–200.

    Article  CAS  Google Scholar 

  47. Hinnebusch AG . Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 2005; 59: 407–450.

    Article  CAS  Google Scholar 

  48. Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, Nielsen KH et aleIF3a cooperates with sequences 5' of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 2008; 22: 2414–2425.

    Article  CAS  Google Scholar 

  49. Calvo SE, Pagliarini DJ, Mootha VK . Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci USA 2009; 106: 7507–7512.

    Article  CAS  Google Scholar 

  50. Arava Y, Boas FE, Brown PO, Herschlag D . Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 2005; 33: 2421–2432.

    Article  CAS  Google Scholar 

  51. Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 2009; 324: 218–223.

    Article  CAS  Google Scholar 

  52. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA et alExpression of distinct RNAs from 3' untranslated regions. Nucleic Acids Res 2011; 39: 2393–2403.

    Article  CAS  Google Scholar 

  53. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP . A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353–358.

    Article  CAS  Google Scholar 

  54. Liao DZ, Pantazis CG, Hou X, Li SA . Promotion of estrogen-induced mammary gland carcinogenesis by androgen in the male Noble rat: probable mediation by steroid receptors. Carcinogenesis 1998; 19: 2173–2180.

    Article  CAS  Google Scholar 

  55. Sumanasekera C, Watt DS, Stamm S . Substances that can change alternative splice-site selection. Biochem Soc Trans 2008; 36: 483–490.

    Article  CAS  Google Scholar 

  56. Campbell MJ, Wollish WS, Lobo M, Esserman LJ . Epithelial and fibroblast cell lines derived from a spontaneous mammary carcinoma in a MMTV/neu transgenic mouse. In Vitro Cell Dev Biol Anim 2002; 38: 326–333.

    Article  CAS  Google Scholar 

  57. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM . Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 1997; 57: 3325–3330.

    CAS  PubMed  Google Scholar 

  58. Hinds PW, Dowdy SF, Eaton EN, Arnold A, Weinberg RA . Function of a human cyclin gene as an oncogene. Proc Natl Acad Sci USA 1994; 91: 709–713.

    Article  CAS  Google Scholar 

  59. Gresner P, Gromadzinska J, Wasowicz W . Reference genes for gene expression studies on non-small cell lung cancer. Acta Biochem Pol 2009; 56: 307–316.

    CAS  Google Scholar 

  60. Palazzo AF, Akef A . Nuclear export as a key arbiter of ‘mRNA identity’ in eukaryotes. Biochem Biophys Acta 2012; 1819: 566–577.

    CAS  PubMed  Google Scholar 

  61. Sun Y, Sriramajayam K, Luo D, Liao DJ . A quick, cost-free method of purification of DNA fragments from agarose gel. J Cancer 2012; 3: 93–95.

    Article  CAS  Google Scholar 

  62. Wang Y, Thakur A, Sun Y, Wu J, Biliran H, Bollig A et alSynergistic effect of cyclin D1 and c-Myc leads to more aggressive and invasive mammary tumors in severe combined immunodeficient mice. Cancer Res 2007; 67: 3698–3707.

    Article  CAS  Google Scholar 

  63. Liao DZ, Hou X, Bai S, Li SA, Li JJ . Unusual deregulation of cell cycle components in early and frank estrogen-induced renal neoplasias in the Syrian hamster. Carcinogenesis 2000; 21: 2167–2173.

    Article  CAS  Google Scholar 

  64. Cao S, McGuire JJ, Rustum YM . Antitumor activity of ZD1694 (tomudex) against human head and neck cancer in nude mouse models: role of dosing schedule and plasma thymidine. Clin Cancer Res 1999; 5: 1925–1934.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a NIH grant RO1 CA100864 and a Pardee Foundation grant on pancreatic cancer to DJ Liao. We would like to thank Dr Fred Bogott from Austin Medical Center at Austin of Minnesota for his excellent English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Cao or D J Liao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Cao, S., Yang, M. et al. Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4. Oncogene 32, 1794–1810 (2013). https://doi.org/10.1038/onc.2012.200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.200

Keywords

This article is cited by

Search

Quick links