Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis

Abstract

Little is known about the alterations in microRNA (miRNA) expression patterns during the consecutive stages of cervical cancer development and their association with chromosomal instability. In this study, miRNA expression in normal cervical squamous epithelium, high-grade precancerous lesions (cervical intraepithelial neoplasia (CIN2–3)), squamous cell carcinomas (SCCs) and adenocarcinomas (AdCAs) was integrated with previously generated chromosomal profiles of the same samples. Significantly differential expression during the consecutive stages of cervical SCC development was observed for 106 miRNAs. Of these differentially expressed miRNAs, 27 showed early transiently altered expression in CIN2–3 lesions only, 46 miRNAs showed late altered expression in SCCs only and 33 showed continuously altered expression in both CIN2–3 and SCCs. Altered expression of five significantly differentially expressed miRNAs, hsa-miR-9 (1q23.2), hsa-miR-15b (3q25.32), hsa-miR-28-5p (3q27.3), hsa-miR-100 and hsa-miR-125b (both 11q24.1), was directly linked to frequent chromosomal alterations. Functional analyses were performed for hsa-miR-9, representing a potential oncogene with increased expression linked to a chromosomal gain of 1q. Hsa-miR-9 overexpression was found to increase cell viability, anchorage-independent growth and migration in vitro. Upon organic raft culturing, hsa-miR-9 hampered differentiation and induced proliferation in all strata of the epithelial layer. These findings support a potential oncogenic function of hsa-miR-9 in cervical cancer. In summary, differential expression of 106 miRNAs, partly associated with chromosomal alterations, was observed during cervical SCC development. Altered expression of hsa-miR-9 associated with a chromosomal gain of chromosome 1q was shown to be functionally relevant, underlining the importance of deregulated miRNA expression in cervical carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Bosch FX, Lorincz A, Munoz N, Meijer CJ, Shah KV . The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55: 244–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  3. Fu Y, Reagan J . Pathology of the Uterine Cervix, Vagina and Vulva. Major Problems in Pathology. W.B. Saunders and Co.: Philadelphia, 1989, pp 288–335.

    Google Scholar 

  4. Pisani P, Bray F, Parkin DM . Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 2002; 97: 72–81.

    Article  CAS  PubMed  Google Scholar 

  5. McCredie MR, Sharples KJ, Paul C, Baranyai J, Medley G, Jones RW et al. Natural history of cervical neoplasia and risk of invasive cancer in women with cervical intraepithelial neoplasia 3: a retrospective cohort study. Lancet Oncol 2008; 9: 425–434.

    Article  PubMed  Google Scholar 

  6. Wallin KL, Wiklund F, Angstrom T, Bergman F, Stendahl U, Wadell G et al. Type-specific persistence of human papillomavirus DNA before the development of invasive cervical cancer. N Engl J Med 1999; 341: 1633–1638.

    Article  CAS  PubMed  Google Scholar 

  7. Winer RL, Kiviat NB, Hughes JP, Adam DE, Lee SK, Kuypers JM et al. Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis 2005; 191: 731–738.

    Article  PubMed  Google Scholar 

  8. Zielinski GD, Snijders PJ, Rozendaal L, Voorhorst FJ, van der Linden HC, Runsink AP et al. HPV presence precedes abnormal cytology in women developing cervical cancer and signals false negative smears. Br J Cancer 2001; 85: 398–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li B, Hu Y, Ye F, Li Y, Lv W, Xie X . Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer 2010; 20: 597–604.

    Article  PubMed  Google Scholar 

  10. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA . Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2008; 27: 2575–2582.

    Article  CAS  PubMed  Google Scholar 

  11. McKenna DJ, McDade SS, Patel D, McCance DJ . MicroRNA 203 expression in keratinocytes is dependent on regulation of p53 levels by E6. J Virol 2010; 84: 10644–10652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Melar-New M, Laimins LA . Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol 2010; 84: 5212–5221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nuovo GJ, Wu X, Volinia S, Yan F, di LG, Chin N et al. Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection. Diagn Mol Pathol 2010; 19: 135–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS, Broker TR et al. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 2009; 15: 637–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Muralidhar B, Goldstein LD, Ng G, Winder DM, Palmer RD, Gooding EL et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels. J Pathol 2007; 212: 368–377.

    Article  CAS  PubMed  Google Scholar 

  16. Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011; 224: 496–507.

    Article  CAS  PubMed  Google Scholar 

  17. Hu X, Schwarz JK, Lewis Jr JS, Huettner PC, Rader JS, Deasy JO et al. A microRNA expression signature for cervical cancer prognosis. Cancer Res 2010; 70: 1441–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY et al. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 2008; 14: 2535–2542.

    Article  CAS  PubMed  Google Scholar 

  19. Lui WO, Pourmand N, Patterson BK, Fire A . Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 2007; 67: 6031–6043.

    Article  CAS  PubMed  Google Scholar 

  20. Rao Q, Zhou H, Peng Y, Li J, Lin Z . Aberrant microRNA expression in human cervical carcinomas. Med Oncol 2011 (doi:10.1007/s12032-011-9830-2).

    Article  PubMed  Google Scholar 

  21. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008; 3: e2557.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J et al. Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 2011; 224: 484–495.

    Article  CAS  PubMed  Google Scholar 

  23. Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA . MicroRNA expression variability in human cervical tissues. PLoS One 2010; 5: e11780.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bray I, Bryan K, Prenter S, Buckley PG, Foley NH, Murphy DM et al. Widespread dysregulation of MiRNAs by MYCN amplification and chromosomal imbalances in neuroblastoma: association of miRNA expression with survival. PLoS One 2009; 4: e7850.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lionetti M, Agnelli L, Mosca L, Fabris S, Andronache A, Todoerti K et al. Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes Cancer 2009; 48: 521–531.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A 2006; 103: 9136–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N et al. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 2008; 105: 7004–7009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wilting SM, Steenbergen RD, Tijssen M, van Wieringen WN, Helmerhorst TJ, van Kemenade FJ et al. Chromosomal signatures of a subset of high-grade premalignant cervical lesions closely resemble invasive carcinomas. Cancer Res 2009; 69: 647–655.

    Article  CAS  PubMed  Google Scholar 

  30. Wilting SM, Snijders PJ, Meijer GA, Ylstra B, van den IJssel PR, Snijders AM et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J Pathol 2006; 209: 220–230.

    Article  CAS  PubMed  Google Scholar 

  31. Tase T, Okagaki T, Clark BA, Twiggs LB, Ostrow RS, Faras AJ . Human papillomavirus DNA in adenocarcinoma in situ, microinvasive adenocarcinoma of the uterine cervix, and coexisting cervical squamous intraepithelial neoplasia. Int J Gynecol Pathol 1989; 8: 8–17.

    Article  CAS  PubMed  Google Scholar 

  32. van Wieringen WN, van de Wiel MA . Nonparametric testing for DNA copy number induced differential mRNA gene expression. Biometrics 2009; 65: 19–29.

    Article  CAS  PubMed  Google Scholar 

  33. Mascaux C, Laes JF, Anthoine G, Haller A, Ninane V, Burny A et al. Evolution of microRNA expression during human bronchial squamous carcinogenesis. Eur Respir J 2009; 33: 352–359.

    Article  CAS  PubMed  Google Scholar 

  34. Woods K, Thomson JM, Hammond SM . Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem 2007; 282: 2130–2134.

    Article  CAS  PubMed  Google Scholar 

  35. Henson BJ, Bhattacharjee S, O′Dee DM, Feingold E, Gollin SM . Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009; 48: 569–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1. FEBS J 2009; 276: 5537–5546.

    Article  CAS  PubMed  Google Scholar 

  37. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  38. Hildebrandt MA, Gu J, Lin J, Ye Y, Tan W, Tamboli P et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene 2010; 29: 5724–5728.

    Article  CAS  PubMed  Google Scholar 

  39. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 2008; 105: 13556–13561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsu PY, Deatherage DE, Rodriguez BA, Liyanarachchi S, Weng YI, Zuo T et al. Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 2009; 69: 5936–5945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 2008; 214: 17–24.

    Article  CAS  PubMed  Google Scholar 

  42. Weber B, Stresemann C, Brueckner B, Lyko F . Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 2007; 6: 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  43. Bueno MJ, Perez de CI, Gomez de CM, Santos J, Calin GA, Cigudosa JC et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008; 13: 496–506.

    Article  CAS  PubMed  Google Scholar 

  44. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J . miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis 2010; 31: 766–776.

    Article  CAS  PubMed  Google Scholar 

  45. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J . Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res 2008; 68: 2094–2105.

    Article  CAS  PubMed  Google Scholar 

  46. Sang CC, Yeung WK, Ying LC, Ping CL, Kwan HP, Yan CS et al. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med 2011; 15: 2760–2767.

    Article  Google Scholar 

  47. Botezatu A, Goia-Rusanu CD, Iancu IV, Huica I, Plesa A, Socolov D et al. Quantitative analysis of the relationship between microRNA124a, -34b and -203 gene methylation and cervical oncogenesis. Mol Med Report 2011; 4: 121–128.

    CAS  Google Scholar 

  48. Wentzensen N, von Knebel DM . Biomarkers in cervical cancer screening. Dis Markers 2007; 23: 315–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jacobs MV, Snijders PJ, van den Brule AJ, Helmerhorst TJ, Meijer CJ, Walboomers JM . A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 1997; 35: 791–795.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Steenbergen RD, Walboomers JM, Meijer CJ, van der Raaij-Helmer EM, Parker JN, Chow LT et al. Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene 1996; 13: 1249–1257.

    CAS  PubMed  Google Scholar 

  51. Steenbergen RD, Kramer D, Meijer CJ, Walboomers JM, Trott DA, Cuthbert AP et al. Telomerase suppression by chromosome 6 in a human papillomavirus type 16-immortalized keratinocyte cell line and in a cervical cancer cell line. J Natl Cancer Inst 2001; 93: 865–872.

    Article  CAS  PubMed  Google Scholar 

  52. Wilting SM, de WJ, Meijer CJ, Berkhof J, Yi Y, van Wieringen WN et al. Integrated genomic and transcriptional profiling identifies chromosomal loci with altered gene expression in cervical cancer. Genes Chromosomes Cancer 2008; 47: 890–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manduchi E, Grant GR, McKenzie SE, Overton GC, Surrey S, Stoeckert Jr CJ . Generation of patterns from gene expression data by assigning confidence to differentially expressed genes. Bioinformatics 2000; 16: 685–698.

    Article  CAS  PubMed  Google Scholar 

  54. Yi Y, Mirosevich J, Shyr Y, Matusik R, George Jr AL . Coupled analysis of gene expression and chromosomal location. Genomics 2005; 85: 401–412.

    Article  CAS  PubMed  Google Scholar 

  55. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  56. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124: 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  57. Overmeer RM, Henken FE, Bierkens M, Wilting SM, Timmerman I, Meijer CJ et al. Repression of MAL tumor suppressor activity by promoter methylation during cervical carcinogenesis. J Pathol 2009; 219: 327–336.

    Article  CAS  PubMed  Google Scholar 

  58. Wilting SM, van Boerdonk RA, Henken FE, Meijer CJ, Diosdado B, Meijer GA et al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010; 9: 167.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Steenbergen RD, Kramer D, Braakhuis BJ, Stern PL, Verheijen RH, Meijer CJ et al. TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 2004; 96: 294–305.

    Article  CAS  PubMed  Google Scholar 

  60. Steenbergen RD, Parker JN, Isern S, Snijders PJ, Walboomers JM, Meijer CJ et al. Viral E6-E7 transcription in the basal layer of organotypic cultures without apparent p21cip1 protein precedes immortalization of human papillomavirus type 16- and 18-transfected human keratinocytes. J Virol 1998; 72: 749–757.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the V-ICI institute of the VU University Medical Center, Amsterdam, The Netherlands (grant number CCA20085-04) and the Dutch Cancer Society (KWF, grant number VU2010-4668). We are grateful to Marlon van der Plas, Suzanne Snellenberg, Nour Makazaji and Tim Schutte for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R D M Steenbergen.

Ethics declarations

Competing interests

Dr RDM Steenbergen, Professor Dr PJF Snijders and Professor Dr CJLM Meijer are stockholders of Self-screen BV, The Netherlands. All authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilting, S., Snijders, P., Verlaat, W. et al. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 32, 106–116 (2013). https://doi.org/10.1038/onc.2012.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.20

Keywords

This article is cited by

Search

Quick links