Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

RhoD participates in the regulation of cell-cycle progression and centrosome duplication

Abstract

We have previously identified a Rho protein, RhoD, which localizes to the plasma membrane and the early endocytic compartment. Here, we show that a GTPase-deficient mutant of RhoD, RhoDG26V, causes hyperplasia and perturbed differentiation of the epidermis, when targeted to the skin of transgenic mice. In vitro, gain-of-function and loss-of-function approaches revealed that RhoD is involved in the regulation of G1/S-phase progression and causes overduplication of centrosomes. Centriole overduplication assays in aphidicolin-arrested p53-deficient U2OS cells, in which the cell and the centrosome cycles are uncoupled, revealed that the effects of RhoD and its mutants on centrosome duplication and cell cycle are independent. Enhancement of G1/S-phase progression was mediated via Diaph1, a novel effector of RhoD, which we have identified using a two-hybrid screen. These results indicate that RhoD participates in the regulation of cell-cycle progression and centrosome duplication.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Jaffe AB, Hall A . Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005; 21: 247–269.

    Article  CAS  Google Scholar 

  2. Sit ST, Manser E . Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124 (Part 5): 679–683.

    Article  CAS  Google Scholar 

  3. Nagasaki T, Gundersen GG . Depletion of lysophosphatidic acid triggers a loss of oriented detyrosinated microtubules in motile fibroblasts. J Cell Sci 1996; 109: 2461–2469.

    CAS  PubMed  Google Scholar 

  4. Cook TA, Nagasaki T, Gundersen GG . Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J Cell Biol 1998; 141: 175–185.

    Article  CAS  Google Scholar 

  5. Palazzo AF, Cook TA, Alberts AS, Gundersen GG . mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 2001; 3: 723–729.

    Article  CAS  Google Scholar 

  6. Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M et alEB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 2004; 6: 820–830.

    Article  CAS  Google Scholar 

  7. Mammoto A, Huang S, Moore K, Oh P, Ingber DE . Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 2004; 279: 26323–26330.

    Article  CAS  Google Scholar 

  8. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et alMitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    Article  CAS  Google Scholar 

  9. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev 2003; 3: 11–22.

    Article  CAS  Google Scholar 

  10. Sahai E, Marshall CJ . RHO-GTPases and cancer. Nat Rev 2002; 2: 133–142.

    Article  Google Scholar 

  11. Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Lai JL et alNonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin's lymphoma and multiple myeloma. Oncogene 2000; 19: 2023–2032.

    Article  CAS  Google Scholar 

  12. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et alRac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000; 19: 3013–3020.

    Article  CAS  Google Scholar 

  13. Singh A, Karnoub AE, Palmby TR, Lengyel E, Sondek J, Rac1b Der CJ . a tumor associated, constitutively active Rac1 splice variant, promotes cellular transformation. Oncogene 2004; 23: 9369–9380.

    Article  CAS  Google Scholar 

  14. Murphy C, Saffrich R, Grummt M, Gournier H, Rybin V, Rubino M et alEndosome dynamics regulated by a Rho protein. Nature 1996; 384: 427–432.

    Article  CAS  Google Scholar 

  15. Murphy C, Saffrich R, Olivo-Marin J-C, Giner A, Ansorge W, Fotsis T et alDual function of rhoD in vesicular movement and cell motility. Eur J Cell Biol 2001; 80: 391–398.

    Article  CAS  Google Scholar 

  16. Tsubakimoto K, Matsumoto K, Abe H, Ishii J, Amano M, Kaibuchi K et alSmall GTPase RhoD suppresses cell migration and cytokinesis. Oncogene 1999; 18: 2431–2440.

    Article  CAS  Google Scholar 

  17. Gasman S, Kalaidzidis Y, Zerial M . RhoD regulates endosome dynamics through Diaphanous-related formin and Src tyrosine kinase. Nat Cell Biol 2003; 5: 195–204.

    Article  CAS  Google Scholar 

  18. Zanata SM, Hovatta I, Rohm B, Puschel AW. . Antagonistic effects of Rnd1 and RhoD GTPases regulate receptor activity in Semaphorin 3A-induced cytoskeletal collapse. J Neurosci 2002; 22: 471–477.

    Article  CAS  Google Scholar 

  19. Tong Y, Chugha P, Hota PK, Alviani RS, Li M, Tempel W et alBinding of Rac1, Rnd1, and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J Biol Chem 2007; 282: 37215–37224.

    Article  CAS  Google Scholar 

  20. Moll R, Franke W, Schiller D, Geiger B, Krepler R . The catalogue of human cytokeratins: patterns of expression in nromal epithelia, tumors and cancer cells. Cell 1982; 31: 11–24.

    Article  CAS  Google Scholar 

  21. Stoler A, Kopan R, Duvic M, Fuchs E . Use of specific antibodies and cDNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol 1988; 107: 427–446.

    Article  CAS  Google Scholar 

  22. Rain JC, Selig L, De Reuse H, Battaglia V, Reverdy C, Simon S et alThe protein-protein interaction map of Helicobacter pylori. Nature 2001; 409: 211–215.

    Article  CAS  Google Scholar 

  23. Kato T, Watanabe N, Morishima Y, Fujita A, Ishizaki T, Narumiya S. . Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J Cell Sci 2000; 114: 775–784.

    Google Scholar 

  24. Kubo A, Tsukita S . Non-membranous granular organelle consisting of PCM-1: subcellular distribution and cell-cycle-dependent assembly/disassembly. J Cell Sci 2003; 116 (Part 5): 919–928.

    Article  CAS  Google Scholar 

  25. Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 1995; 130: 105–115.

    Article  CAS  Google Scholar 

  26. Cizmecioglu O, Arnold M, Bahtz R, Settele F, Ehret L, Haselmann-Weiss U et alCep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J Cell Biol 2010; 191: 731–739.

    Article  CAS  Google Scholar 

  27. Warnke S, Kemmler S, Hames RS, Tsai HL, Hoffmann-Rohrer U, Fry AM et alPolo-like kinase-2 is required for centriole duplication in mammalian cells. Curr Biol 2004; 14: 1200–1207.

    Article  CAS  Google Scholar 

  28. Ma Z, Kanai M, Kawamura K, Kaibuchi K, Ye K, Fukasawa K . Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication. Mol Cell Biol 2006; 26: 9016–9034.

    Article  CAS  Google Scholar 

  29. Hu W, Bellone CJ, Baldassare JJ . RhoA stimulates p27(Kip) degradation through its regulation of cyclin E/CDK2 activity. J Biol Chem 1999; 274: 3396–3401.

    Article  CAS  Google Scholar 

  30. Yamamoto M, Marui N, Sakai T, Morii N, Kozaki S, Ikai K et alADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 1993; 8: 1449–1455.

    CAS  PubMed  Google Scholar 

  31. Olsen MF, Paterson HF, Marshall CJ . Signals from Ras and Rho GTPases interact to regulate the expression of p21 waf1/cip1. Nature 1998; 394: 295–299.

    Article  Google Scholar 

  32. Villalonga P, Ridley AJ . Rho GTPases and cell cycle control. Growth Factors 2006; 24: 159–164.

    Article  CAS  Google Scholar 

  33. Carrano AC, Eytan E, Hershko A, Pagano M . SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1999; 1: 193–199.

    Article  CAS  Google Scholar 

  34. Lacey KR, Jackson PK, Stearns T . Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad SciUSA 1999; 96: 2817–2822.

    Article  CAS  Google Scholar 

  35. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science (New York, NY) 1999; 283: 851–854.

    Article  CAS  Google Scholar 

  36. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et alNucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103: 127–140.

    Article  CAS  Google Scholar 

  37. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K . Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 2001; 276: 21529–21537.

    Article  CAS  Google Scholar 

  38. Cizmecioglu O, Warnke S, Arnold M, Duensing S, Hoffmann I . Plk2 regulated centriole duplication is dependent on its localization to the centrioles and a functional polo-box domain. Cell Cycle 2008; 7: 3548–3555.

    Article  CAS  Google Scholar 

  39. Krause A, Hoffmann I . Polo-like kinase 2-dependent phosphorylation of NPM/B23 on serine 4 triggers centriole duplication. PLoS One 2010; 5: e9849.

    Article  Google Scholar 

  40. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA . The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005; 7: 1140–1146.

    Article  CAS  Google Scholar 

  41. Kleylein-Sohn J, Westendorf J, Le Clech M, Habedanck R, Stierhof YD, Nigg EA . Plk4-induced centriole biogenesis in human cells. Dev Cell 2007; 13: 190–202.

    Article  CAS  Google Scholar 

  42. Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL . Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 2011; 21: 428–432.

    Article  CAS  Google Scholar 

  43. Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C et alEarly endosomal regulation of Smad-dependent signaling in endothelial cells. J Biol Chem 2002; 277: 18046–18052.

    Article  CAS  Google Scholar 

  44. Bellou S, Hink MA, Bagli E, Panopoulou E, Bastiaens PI, Murphy C et alVEGF autoregulates its proliferative and migratory ERK1/2 and p38 cascades by enhancing the expression of DUSP1 and DUSP5 phosphatases in endothelial cells. Am J Physiol Cell Physiol 2009; 297: C1477–C1489.

    Article  CAS  Google Scholar 

  45. Panopoulou E, Murphy C, Rasmussen H, Bagli E, Rofstad EK, Fotsis T . Activin A suppresses neuroblastoma xenograft tumor growth via antimitotic and antiangiogenic mechanisms. Cancer Res 2005; 65: 1877–1886.

    Article  CAS  Google Scholar 

  46. Sflomos G, Kostaras E, Panopoulou E, Pappas N, Kyrkou A, Politou AS et alERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. J Cell Sci 2011; 124: 3209–3222.

    Article  CAS  Google Scholar 

  47. Christoforidis S, Zerial M . Purification and identification of novel Rab effectors using affinity chromatography. Methods 2000; 20: 403–410.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the confocal laser microscope facility of the University of Ioannina for the use of the Leica TCS-SP confocal microscope. We thank George Bartholomatos for FACS analysis; Zoi Lygerou, University of Patras, Greece for critical reading of the manuscript; George Keech for excellent animal husbandry; and Angelika Giner for expert technical assistance. This work was supported by a Research Training Network grant (to MZ and CM) of the European Commission (contract no: HRPN-CT-2000-00081). CM was supported by a short-term EMBO fellowship. MS was supported by the Postgraduate Master’s Program of Biotechnology of the University of Ioannina funded by the Ministry of Education and Religious Affairs of Greece. AK was supported by the PENED 03EΔ688 program, which was co-financed by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%). RGP was supported by grants from the National Health and Medical Research Council of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Murphy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kyrkou, A., Soufi, M., Bahtz, R. et al. RhoD participates in the regulation of cell-cycle progression and centrosome duplication. Oncogene 32, 1831–1842 (2013). https://doi.org/10.1038/onc.2012.195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.195

Keywords

  • RhoD
  • proliferation
  • centrosome cycle

This article is cited by

Search

Quick links