Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Coordinate regulation of estrogen receptor β degradation by Mdm2 and CREB-binding protein in response to growth signals

Abstract

The biological actions of estrogen are mediated via estrogen receptors ERα and ERβ. Yet, other cellular signaling events that also impact ER functions have an important role in breast carcinogenesis. Here, we show that activation of ErbB2/ErbB3 tyrosine kinase receptors with growth factor heregulin-β prompts ERβ degradation by the 26S proteasome, a mechanism that requires the coactivator cAMP response element-binding (CREB)-binding protein (CBP). We found that CBP promotes ERβ ubiquitination and degradation through enhancement of the PI3-K/Akt pathway by heregulin-β, an effect potentiated by a negatively charged hinge region of ERβ. Activated Akt triggered the recruitment of E3 ubiquitin ligase Mdm2 to ERβ, which was further stabilized by CBP, resulting in ERβ poly-ubiquitination. Mutation of CBP Thr-1872 or Mdm2 Ser-186/188 Akt sites resulted in a dissociation of the ERβ-CBP-Mdm2 complex and reduced ERβ turnover. We found that the decrease in ERβ induced by heregulin-β was associated with reduced target gene promoter occupancy and enhanced proliferation of breast cancer cells. However, knockdown of Mdm2 restored endogenous ERβ levels resulting in reduction of breast cancer cell growth. These studies identify a tripartite Akt-regulated phosphorylation mechanism that functions to hamper normal ERβ activity and turnover through the concerted actions of CBP and Mdm2 in response to growth factor signaling pathways in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev 2007; 87: 905–931.

    Article  CAS  PubMed  Google Scholar 

  2. Weigel NL, Moore NL . Steroid receptor phosphorylation: a key modulator of multiple receptor functions. Mol Endocrinol 2007; 21: 2311–2319.

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez M, Picard N, Sauvé K, Tremblay A . Challenging estrogen receptor beta with phosphorylation. Trends Endocrinol Metab 2010; 21: 104–110.

    Article  CAS  PubMed  Google Scholar 

  4. Sanchez M, Tremblay A . Growth factor signaling to estrogen receptors in hormone dependent cancers. Mol Genet Cancer 2005; 5: 149–185.

    Google Scholar 

  5. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 1995; 270: 1491–1494.

    Article  CAS  PubMed  Google Scholar 

  6. Bunone G, Briand P-A, Miksicek RJ, Picard D . Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 1996; 15: 2174–2183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tremblay A, Giguere V . Contribution of steroid receptor coactivator-1 and CREB binding protein in ligand-independent activity of estrogen receptor beta. J Steroid Biochem Mol Biol 2001; 77: 19–27.

    Article  CAS  PubMed  Google Scholar 

  8. Tremblay A, Tremblay GB, Labrie F, Giguere V . Ligand-independent recruitment of SRC-1 to estrogen receptor β through phosphorylation of activation function AF-1. Mol Cell 1999; 3: 513–519.

    Article  CAS  PubMed  Google Scholar 

  9. St Laurent V, Sanchez M, Charbonneau C, Tremblay A . Selective hormone-dependent repression of estrogen receptor beta by a p38-activated ErbB2/ErbB3 pathway. J Steroid Biochem Mol Biol 2005; 94: 23–37.

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez M, Sauvé K, Picard N, Tremblay A . The hormonal response of estrogen receptor beta is decreased by the PI3K/Akt pathway via a phosphorylation-dependent release of CREB-binding protein. J Biol Chem 2007; 282: 4830–4840.

    Article  CAS  PubMed  Google Scholar 

  11. Kalkhoven E . CBP and p300: HATs for different occasions. Biochem Pharmacol 2004; 68: 1145–1155.

    Article  CAS  PubMed  Google Scholar 

  12. Goodman RH, Smolik S . CBP/p300 in cell growth, transformation, and development. Genes Dev 2000; 14: 1553–1577.

    CAS  PubMed  Google Scholar 

  13. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW . Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 1999; 96: 1858–1862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lonard DM, Nawaz Z, Smith CL, O'Malley BW . The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell 2000; 5: 939–948.

    Article  CAS  PubMed  Google Scholar 

  15. Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G et al. Phosphorylation of activation function-1 regulates proteasome-dependent nuclear mobility and E6-AP ubiquitin ligase recruitment to the estrogen receptor beta. Mol Endocrinol 2008; 22: 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meek DW, Hupp TR . The regulation of MDM2 by multisite phosphorylation--opportunities for molecular-based intervention to target tumours? Semin Cancer Biol 2010; 20: 19–28.

    Article  CAS  PubMed  Google Scholar 

  17. Mayo LD, Donner DB . A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 2001; 98: 11598–11603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng J, Tamaskovic R, Yang Z, Brazil DP, Merlo A, Hess D et al. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J Biol Chem 2004; 279: 35510–35517.

    Article  CAS  PubMed  Google Scholar 

  19. Radhakrishnan I, Perez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE . Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 1997; 91: 741–752.

    Article  CAS  PubMed  Google Scholar 

  20. Brekman A, Singh KE, Polotskaia A, Kundu N, Bargonetti J . A p53-independent role of Mdm2 in estrogen-mediated activation of breast cancer cell proliferation. Breast Cancer Res 2011; 13: R3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol Endocrinol 2010; 24: 76–90.

    Article  CAS  PubMed  Google Scholar 

  22. Berry NB, Fan M, Nephew KP . Estrogen receptor-alpha hinge-region lysines 302 and 303 regulate receptor degradation by the proteasome. Mol Endocrinol 2008; 22: 1535–1551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subramanian K, Jia D, Kapoor-Vazirani P, Powell DR, Collins RE, Sharma D et al. Regulation of estrogen receptor alpha by the SET7 lysine methyltransferase. Mol Cell 2008; 30: 336–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ariazi EA, Clark GM, Mertz JE . Estrogen-related receptor alpha and estrogen-related receptor gamma associate with unfavorable and favorable biomarkers, respectively, in human breast cancer. Cancer Res 2002; 62: 6510–6518.

    CAS  PubMed  Google Scholar 

  25. Shao W, Keeton EK, McDonnell DP, Brown M . Coactivator AIB1 links estrogen receptor transcriptional activity and stability. Proc Natl Acad Sci USA 2004; 101: 11599–11604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nawaz Z, Lonard DM, Smith CL, Lev-Lehman E, Tsai SY, Tsai MJ et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 1999; 19: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim K, Burghardt R, Barhoumi R, Lee SO, Liu X, Safe S . MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J Mol Endocrinol 2011; 46: 67–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi D, Pop MS, Kulikov R, Love IM, Kung AL, Grossman SR . CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc Natl Acad Sci USA 2009; 106: 16275–16280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marine JC, Lozano G . Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ 2010; 17: 93–102.

    Article  CAS  PubMed  Google Scholar 

  30. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 1998; 2: 405–415.

    Article  CAS  PubMed  Google Scholar 

  31. Arpino G, Wiechmann L, Osborne CK, Schiff R . Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev 2008; 29: 217–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jordan VC, O'Malley BW . Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 2007; 25: 5815–5824.

    Article  CAS  PubMed  Google Scholar 

  33. Sakamoto G, Honma N . Estrogen receptor-beta status influences clinical outcome of triple-negative breast cancer. Breast Cancer 2009; 16: 281–282.

    Article  PubMed  Google Scholar 

  34. Lazennec G . Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett 2006; 231: 151–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Loda M, Kaelin Jr. WG Prostate cancer: beta control your hormones. Cancer Cell 2010; 17: 311–312.

    Article  CAS  PubMed  Google Scholar 

  36. Roger P, Esslimani-Sahla M, Delfour C, Lazennec G, Rochefort H, Maudelonde T . Expression of estrogen receptors alpha and beta in early steps of human breast carcinogenesis. Adv Exp Med Biol 2008; 617: 139–148.

    Article  CAS  PubMed  Google Scholar 

  37. Leygue E, Dotzlaw H, Watson PH, Murphy LC . Altered estrogen receptor a and b messenger RNA expression during human breast tumorigenesis. Cancer Res 1998; 58: 3197–3201.

    CAS  PubMed  Google Scholar 

  38. Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F . ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 2001; 142: 4120–4130.

    Article  CAS  PubMed  Google Scholar 

  39. Lindberg K, Strom A, Lock JG, Gustafsson JA, Haldosen LA, Helguero LA . Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells. J Cell Physiol 2010; 222: 156–167.

    Article  CAS  PubMed  Google Scholar 

  40. Treeck O, Lattrich C, Springwald A, Ortmann O . Estrogen receptor beta exerts growth-inhibitory effects on human mammary epithelial cells. Breast Cancer Res Treat 2010; 120: 557–565.

    Article  CAS  PubMed  Google Scholar 

  41. Nair HB, Kirma NB, Ganapathy M, Vadlamudi RK, Tekmal RR . Estrogen receptor-beta activation in combination with letrozole blocks the growth of breast cancer tumors resistant to letrozole therapy. Steroids 2011; 76: 792–796.

    Article  CAS  PubMed  Google Scholar 

  42. Sauvé K, Lepage J, Sanchez M, Heveker N, Tremblay A . Positive Feedback Activation of Estrogen Receptors by the CXCL12-CXCR4 Pathway. Cancer Res 2009; 69: 5793–5800.

    Article  PubMed  Google Scholar 

  43. Demers A, Caron V, Rodrigue-Way A, Wahli W, Ong H, Tremblay A . A concerted kinase interplay identifies PPARγ as a molecular target of ghrelin signaling in macrophages. PLoS ONE 2009; 4: e7728.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Avallone R, Demers A, Rodrigue-Way A, Bujold K, Harb D, Anghel S et al. A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor upregulates ABC sterol transporters and cholesterol efflux in macrophages through a PPARγ-dependent pathway. Mol Endocrinol 2006; 20: 3165–3178.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the laboratory for critical reading and useful comments. MS is supported by a doctoral award from the FHSJ (Fondation de l’Hôpital Ste-Justine), NP by the FRSQ (Fonds de la Recherche en Santé du Québec) and the FHSJ, and KS by the GRUM (Groupe de Recherche sur le Médicament de l’Université de Montréal), the FHSJ and the CIHR (Canadian Institutes of Health Research). AT is a New Investigator of the CIHR. This work was supported by grants from the CIHR, the NSERC (Natural Sciences and Engineering Research Council of Canada), the Cancer Research Society Inc. and the Canadian Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tremblay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanchez, M., Picard, N., Sauvé, K. et al. Coordinate regulation of estrogen receptor β degradation by Mdm2 and CREB-binding protein in response to growth signals. Oncogene 32, 117–126 (2013). https://doi.org/10.1038/onc.2012.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.19

Keywords

This article is cited by

Search

Quick links