Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ubiquitin-specific protease USP2a prevents endocytosis-mediated EGFR degradation

Abstract

Ubiquitination of epidermal growth factor receptor (EGFR) is required for downregulation of the receptor by endocytosis. Impairment of this pathway results in constitutively active EGFR, which is associated with carcinogenesis, particularly in lung cancer. We previously demonstrated that the deubiquitinating enzyme ubiquitin-specific protease 2a (USP2a) has oncogenic properties. Here, we show a new role for USP2a as a regulator of EGFR endocytosis. USP2a localizes to early endosomes and associates with EGFR, stabilizing the receptor, which retains active downstream signaling. HeLa cells transiently expressing catalytically active, but not mutant (MUT), USP2a show increased plasma membrane-localized EGFR, as well as decreased internalized and ubiquitinated EGFR. Conversely, USP2a silencing reverses this phenotype. Importantly, USP2a prevents the degradation of MUT in addition to wild-type EGFR. Finally, we observed that USP2a and EGFR proteins are coordinately overexpressed in non-small cell lung cancers. Taken together, our data indicate that USP2a antagonizes EGFR endocytosis and thus amplifies signaling activity from the receptor. Our findings suggest that regulation of deubiquitination could be exploited therapeutically in cancers overexpressing EGFR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

CHC:

clathrin heavy chain

DUB:

deubiquitinating enzyme

EEA1:

early endosomal antigen

EGFR:

epidermal growth factor receptor

WT:

wild type

MUT:

mutant

RTK:

receptor tyrosine kinase

TfR:

transferrin receptor

USP2:

ubiquitin-specific protease 2

References

  1. Sorkin A, Von Zastrow M . Signal transduction and endocytosis: close encounters of many kinds. Nat Rev Mol Cell Biol 2002; 3: 600–614.

    Article  CAS  Google Scholar 

  2. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I . Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 2003; 5: 461–466.

    Article  CAS  Google Scholar 

  3. Mosesson Y, Shtiegman K, Katz M, Zwang Y, Vereb G, Szollosi J et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J Biol Chem 2003; 278: 21323–21326.

    Article  CAS  Google Scholar 

  4. Hurley JH, Emr SD . The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 2006; 35: 277–298.

    Article  CAS  Google Scholar 

  5. Bache KG, Slagsvold T, Stenmark H . Defective downregulation of receptor tyrosine kinases in cancer. Embo J 2004; 23: 2707–2712.

    Article  CAS  Google Scholar 

  6. Polo S, Pece S, Di Fiore PP . Endocytosis and cancer. Curr Opin Cell Biol 2004; 16: 156–161.

    Article  CAS  Google Scholar 

  7. Hershko A, Heller H, Elias S, Ciechanover A . Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 1983; 258: 8206–8214.

    CAS  PubMed  Google Scholar 

  8. Love KR, Catic A, Schlieker C, Ploegh HL . Mechanisms, biology and inhibitors of deubiquitinating enzymes. Nat Chem Biol 2007; 3: 697–705.

    Article  CAS  Google Scholar 

  9. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123: 773–786.

    Article  CAS  Google Scholar 

  10. d'Azzo A, Bongiovanni A, Nastasi T . E3 ubiquitin ligases as regulators of membrane protein trafficking and degradation. Traffic 2005; 6: 429–441.

    Article  CAS  Google Scholar 

  11. Thien CB, Langdon WY . Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–307.

    Article  CAS  Google Scholar 

  12. Clague MJ, Urbe S . Endocytosis: the DUB version. Trends Cell Biol 2006; 16: 551–559.

    Article  CAS  Google Scholar 

  13. Komada M . Controlling receptor downregulation by ubiquitination and deubiquitination. Curr Drug Discov Technol 2008; 5: 78–84.

    Article  CAS  Google Scholar 

  14. Urbe S, McCullough J, Row P, Prior IA, Welchman R, Clague MJ . Control of growth factor receptor dynamics by reversible ubiquitination. Biochem Soc Trans 2006; 34: 754–756.

    Article  CAS  Google Scholar 

  15. Bowers K, Piper SC, Edeling MA, Gray SR, Owen DJ, Lehner PJ et al. Degradation of endocytosed epidermal growth factor and virally ubiquitinated major histocompatibility complex class I is independent of mammalian ESCRTII. J Biol Chem 2006; 281: 5094–5105.

    Article  CAS  Google Scholar 

  16. McCullough J, Clague MJ, Urbe S . AMSH is an endosome-associated ubiquitin isopeptidase. J Cell Biol 2004; 166: 487–492.

    Article  CAS  Google Scholar 

  17. Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M . Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16: 5163–5174.

    Article  CAS  Google Scholar 

  18. Row PE, Prior IA, McCullough J, Clague MJ, Urbe S . The ubiquitin isopeptidase UBPY regulates endosomal ubiquitin dynamics and is essential for receptor down-regulation. J Biol Chem 2006; 281: 12618–12624.

    Article  CAS  Google Scholar 

  19. Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 2007; 27: 5029–5039.

    Article  CAS  Google Scholar 

  20. Agromayor M, Martin-Serrano J . Interaction of AMSH with ESCRT-III and deubiquitination of endosomal cargo. J Biol Chem 2006; 281: 23083–23091.

    Article  CAS  Google Scholar 

  21. Ma YM, Boucrot E, Villen J, Affar el B, Gygi SP, Gottlinger HG et al. Targeting of AMSH to endosomes is required for epidermal growth factor receptor degradation. J Biol Chem 2007; 282: 9805–9812.

    Article  CAS  Google Scholar 

  22. Alwan HA, van Leeuwen JE . UBPY-mediated epidermal growth factor receptor (EGFR) de-ubiquitination promotes EGFR degradation. J Biol Chem 2007; 282: 1658–1669.

    Article  CAS  Google Scholar 

  23. Graner E, Tang D, Rossi S, Baron A, Migita T, Weinstein LJ et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 2004; 5: 253–261.

    Article  CAS  Google Scholar 

  24. Shan J, Zhao W, Gu W . Suppression of cancer cell growth by promoting cyclin D1 degradation. Mol Cell 2009; 36: 469–476.

    Article  CAS  Google Scholar 

  25. Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK . The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. Embo J 2007; 26: 976–986.

    Article  CAS  Google Scholar 

  26. Allende-Vega N, Sparks A, Lane DP, Saville MK . MdmX is a substrate for the deubiquitinating enzyme USP2a. Oncogene 2010; 29: 432–441.

    Article  CAS  Google Scholar 

  27. Benassi B, Flavin R, Marchionni L, Zanata S, Pan Y, Chowdhury D et al. c-Myc is activated via USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discovery 2012; 2: 236–247.

    Article  CAS  Google Scholar 

  28. Gousseva N, Baker RT . Gene structure, alternate splicing, tissue distribution, cellular localization, and developmental expression pattern of mouse deubiquitinating enzyme isoforms Usp2-45 and Usp2-69. Gene Expr 2003; 11: 163–179.

    Article  CAS  Google Scholar 

  29. Lin H, Keriel A, Morales CR, Bedard N, Zhao Q, Hingamp P et al. Divergent N-terminal sequences target an inducible testis deubiquitinating enzyme to distinct subcellular structures. Mol Cell Biol 2000; 20: 6568–6578.

    Article  CAS  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  31. Priolo C, Tang D, Brahamandan M, Benassi B, Sicinska E, Ogino S et al. The isopeptidase USP2a protects human prostate cancer from apoptosis. Cancer Res 2006; 66: 8625–8632.

    Article  CAS  Google Scholar 

  32. de Araujo ME, Huber LA, Stasyk T . Isolation of endocitic organelles by density gradient centrifugation. Methods Mol Biol 2008; 424: 317–331.

    Article  Google Scholar 

  33. Hicke L . Gettin' down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 1999; 9: 107–112.

    Article  CAS  Google Scholar 

  34. Burke P, Schooler K, Wiley HS . Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 2001; 12: 1897–1910.

    Article  CAS  Google Scholar 

  35. Grandis JR, Drenning SD, Chakraborty A, Zhou MY, Zeng Q, Pitt AS et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor- mediated cell growth In vitro. J Clin Invest 1998; 102: 1385–1392.

    Article  CAS  Google Scholar 

  36. Abella JV, Peschard P, Naujokas MA, Lin T, Saucier C, Urbe S et al. Met/hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol 2005; 25: 9632–9645.

    Article  CAS  Google Scholar 

  37. Hammond DE, Urbe S, Vande Woude GF, Clague MJ . Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene 2001; 20: 2761–2770.

    Article  CAS  Google Scholar 

  38. Grovdal LM, Stang E, Sorkin A, Madshus IH . Direct interaction of Cbl with pTyr 1045 of the EGF receptor (EGFR) is required to sort the EGFR to lysosomes for degradation. Exp Cell Res 2004; 300: 388–395.

    Article  CAS  Google Scholar 

  39. Huang F, Goh LK, Sorkin A . EGF receptor ubiquitination is not necessary for its internalization. Proc Natl Acad Sci USA 2007; 104: 16904–16909.

    Article  CAS  Google Scholar 

  40. Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A . Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 2006; 21: 737–748.

    Article  CAS  Google Scholar 

  41. Jiang X, Huang F, Marusyk A, Sorkin A . Grb2 regulates internalization of EGF receptors through clathrin-coated pits. Mol Biol Cell 2003; 14: 858–870.

    Article  CAS  Google Scholar 

  42. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY, Alroy I et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 1999; 4: 1029–1040.

    Article  CAS  Google Scholar 

  43. Haglund K, Di Fiore PP, Dikic I . Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 2003; 28: 598–603.

    Article  CAS  Google Scholar 

  44. Reggiori F, Pelham HR . Sorting of proteins into multivesicular bodies: ubiquitin-dependent and -independent targeting. Embo J 2001; 20: 5176–5186.

    Article  CAS  Google Scholar 

  45. Galan JM, Haguenauer-Tsapis R . Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. Embo J 1997; 16: 5847–5854.

    Article  CAS  Google Scholar 

  46. Lenferink AE, Kramer RH, van Vugt MJ, Konigswieser M, Di Fiore PP, van Zoelen EJ et al. Superagonistic behaviour of epidermal growth factor/transforming growth factor-alpha chimaeras: correlation with receptor routing after ligand-induced internalization. Biochem J 1997; 327 (Pt 3): 859–865.

    Article  CAS  Google Scholar 

  47. Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. Embo J 1998; 17: 3385–3397.

    Article  CAS  Google Scholar 

  48. Bunn PA, Franklin W . Epidermal growth factor receptor expression, signal pathway, and inhibitors in non-small cell lung cancer. Semin Oncol 2002; 29: 38–44.

    Article  CAS  Google Scholar 

  49. Cerny T, Barnes DM, Hasleton P, Barber PV, Healy K, Gullick W et al. Expression of epidermal growth factor receptor (EGF-R) in human lung tumours. Br J Cancer 1986; 54: 265–269.

    Article  CAS  Google Scholar 

  50. Sakurada A, Shepherd FA, Tsao MS . Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clin Lung Cancer 2006; 7 (Suppl. 4): S138–S144.

    Article  CAS  Google Scholar 

  51. Mizuno E, Kobayashi K, Yamamoto A, Kitamura N, Komada M . A deubiquitinating enzyme UBPY regulates the level of protein ubiquitination on endosomes. Traffic 2006; 7: 1017–1031.

    Article  CAS  Google Scholar 

  52. Katz M, Shtiegman K, Tal-Or P, Yakir L, Mosesson Y, Harari D et al. Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 2002; 3: 740–751.

    Article  CAS  Google Scholar 

  53. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G et al. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 2002; 416: 451–455.

    Article  CAS  Google Scholar 

  54. Amit I, Yakir L, Katz M, Zwang Y, Marmor MD, Citri A et al. Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev 2004; 18: 1737–1752.

    Article  CAS  Google Scholar 

  55. Stuffers S, Brech A, Stenmark H . ESCRT proteins in physiology and disease. Exp Cell Res 2009; 315: 1619–1626.

    Article  CAS  Google Scholar 

  56. Saksena S, Sun J, Chu T, Emr SD . ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 2007; 32: 561–573.

    Article  CAS  Google Scholar 

  57. Metzig M, Nickles D, Falschlehner C, Lehmann-Koch J, Straub BK, Roth W et al. An RNAi screen identifies USP2 as a factor required for TNF-alpha-induced NF-kappaB signaling. Int J Cancer 2011; 129: 607–618.

    Article  CAS  Google Scholar 

  58. Shi Y, Solomon LR, Pereda-Lopez A, Giranda VL, Luo Y, Johnson EF et al. Ubiquitin-specific cysteine protease 2a (USP2a) regulates the stability of Aurora-A. J Biol Chem 2011; 286: 38960–38968.

    Article  CAS  Google Scholar 

  59. Wessel D, Flügge UI . A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 1984; 138: 141–143.

    Article  CAS  Google Scholar 

  60. Naslavsky N, Weigert R, Donaldson JG . Characterization of a nonclathrin endocytic pathway: membrane cargo and lipid requirements. Mol Biol Cell 2004; 15: 3542–3552.

    Article  CAS  Google Scholar 

  61. Haslekas C, Breen K, Pedersen KW, Johannessen LE, Stang E, Madshus IH . The inhibitory effect of ErbB2 on epidermal growth factor-induced formation of clathrin-coated pits correlates with retention of epidermal growth factor receptor-ErbB2 oligomeric complexes at the plasma membrane. Mol Biol Cell 2005; 16: 5832–5842.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tomas Kirchhausen for AMSH constructs, Mihee Ji and Erik McCauley for technical assistance, Jane Hayward for help with preparation of the figures, Giulio Draetta and Richard J Flavin for critical reading of the manuscript. This work was supported by the National Cancer Institute (RO1CA131945, PO1CA89021, P50 CA90381 and the Prostate Cancer Foundation). SMZ was supported by CAPES (no. 3665/10-0), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Loda.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zanata, S., Kim, J. et al. The ubiquitin-specific protease USP2a prevents endocytosis-mediated EGFR degradation. Oncogene 32, 1660–1669 (2013). https://doi.org/10.1038/onc.2012.188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.188

Keywords

This article is cited by

Search

Quick links