Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling

Abstract

Casitas B-lineage lymphoma (CBL) protein family functions as multifunctional adaptor proteins and E3 ubiquitin ligases that are implicated as regulators of signaling in various cell types. Recent discovery revealed mutations of proto-oncogenic CBL in the linker region and RING finger domain in human acute myeloid neoplasm, and these transforming mutations induced carcinogenesis. However, the adaptor function of CBL mediated signaling pathway during tumorigenesis has not been well characterized. Here, we show that CBL is highly expressed in breast cancer cells and significantly inhibits transforming growth factor-β (TGF-β) tumor suppressive activity. Knockdown of CBL expression resulted in the increased expression of TGF-β target genes, PAI-I and CDK inhibitors such as p15INK4b and p21Cip1. Furthermore, we demonstrate that CBL is frequently overexpressed in human breast cancer tissues, and the loss of CBL decreases the tumorigenic activity of breast cancer cells in vivo. CBL directly binds to Smad3 through its proline-rich motif, thereby preventing Smad3 from interacting with Smad4 and blocking nuclear translocation of Smad3. CBL-b, one of CBL protein family, also interacted with Smad3 and knockdown of both CBL and CBL-b further enhanced TGF-β transcriptional activity. Our findings provide evidence for a previously undescribed mechanism by which oncogenic CBL can block TGF-β tumor suppressor activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Massague J, Seoane J, Wotton D . Smad transcription factors. Genes Dev 2005; 19: 2783–2810.

    Article  CAS  PubMed  Google Scholar 

  2. Massague J . TGFbeta in Cancer. Cell 2008; 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Massague J, Blain SW, Lo RS . TGFbeta signaling in growth control, cancer, and heritable disorders. Cell 2000; 103: 295–309.

    Article  CAS  PubMed  Google Scholar 

  4. Park K, Kim SJ, Bang YJ, Park JG, Kim NK, Roberts AB et al. Genetic changes in the transforming growth factor beta (TGF-beta) type II receptor gene in human gastric cancer cells: correlation with sensitivity to growth inhibition by TGF-beta. Proc Natl Acad Sci USA 1994; 91: 8772–8776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Markowitz SD, Roberts AB . Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev 1996; 7: 93–102.

    Article  CAS  PubMed  Google Scholar 

  6. Lee BI, Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O et al. MS-275, a histone deacetylase inhibitor, selectively induces transforming growth factor beta type II receptor expression in human breast cancer cells. Cancer Res 2001; 61: 931–934.

    CAS  PubMed  Google Scholar 

  7. Lahn M, Berry B, Kloeker S, Yingling JM (2006) TGF-β receptor kinase inhibitors for the treatment of cancer. In: ten Dijke P, Heldin CH (eds). Smad Signal Transduction. Springer Verlag: New York, NY. pp 415–442.

    Chapter  Google Scholar 

  8. Jin W, Kim BC, Tognon C, Lee HJ, Patel S, Lannon CL et al. The ETV6-NTRK3 chimeric tyrosine kinase suppresses TGF-beta signaling by inactivating the TGF-beta type II receptor. Proc Natl Acad Sci USA 2005; 102: 16239–16244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin W, Yun C, Kim HS, Kim SJ . TrkC binds to the bone morphogenetic protein type II receptor to suppress bone morphogenetic protein signaling. Cancer Res 2007; 67: 9869–9877.

    Article  CAS  PubMed  Google Scholar 

  10. Schmidt MH, Dikic I . The Cbl interactome and its functions. Nat Rev Mol Cell Biol 2005; 6: 907–918.

    Article  CAS  PubMed  Google Scholar 

  11. Thien CB, Langdon WY . Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2001; 2: 294–307.

    Article  CAS  PubMed  Google Scholar 

  12. Pennock S, Wang Z . A tale of two Cbls: interplay of c-Cbl and Cbl-b in epidermal growth factor receptor downregulation. Mol Cell Biol 2008; 28: 3020–3037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood 2009; 113: 6182–6192.

    Article  CAS  PubMed  Google Scholar 

  14. Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 2009; 460: 904–908.

    Article  CAS  PubMed  Google Scholar 

  15. Dunbar AJ, Gondek LP, O’Keefe CL, Makishima H, Rataul MS, Szpurka H et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008; 68: 10349–10357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Loh ML, Sakai DS, Flotho C, Kang M, Fliegauf M, Archambeault S et al. Mutations in CBL occur frequently in juvenile myelomonocytic leukemia. Blood 2009; 114: 1859–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan YH, Krishnaswamy S, Nandi S, Kanteti R, Vora S, Onel K et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One 2010; 5: e8972.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Knight JF, Shepherd CJ, Rizzo S, Brewer D, Jhavar S, Dodson AR et al. TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with poor clinical outcome in prostate cancer. Br J Cancer 2008; 99: 1849–1858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bisogna M, Calvano JE, Ho GH, Orlow I, Cordon-Cardo C, Borgen PI et al. Molecular analysis of the INK4A and INK4B gene loci in human breast cancer cell lines and primary carcinomas. Cancer Genet Cytogenet 2001; 125: 131–138.

    Article  CAS  PubMed  Google Scholar 

  20. Inoue Y, Canaff L, Hendy GN, Hisa I, Sugimoto T, Chihara K et al. Role of Smad3, acting independently of transforming growth factor-beta, in the early induction of Wnt-beta-catenin signaling by parathyroid hormone in mouse osteoblastic cells. J Cell Biochem 2009; 108: 285–294.

    Article  CAS  PubMed  Google Scholar 

  21. Chipuk JE, Cornelius SC, Pultz NJ, Jorgensen JS, Bonham MJ, Kim SJ et al. The androgen receptor represses transforming growth factor-beta signaling through interaction with Smad3. J Biol Chem 2002; 277: 1240–1248.

    Article  CAS  PubMed  Google Scholar 

  22. Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K et al. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene 2004; 23: 6914–6923.

    Article  CAS  PubMed  Google Scholar 

  23. Wan M, Huang J, Jhala NC, Tytler EM, Yang L, Vickers SM et al. SCF(beta-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. Am J Pathol 2005; 166: 1379–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y et al. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol 2004; 24: 856–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu L, Chen YG, Massague J . The nuclear import function of Smad2 is masked by SARA and unmasked by TGFbeta-dependent phosphorylation. Nat Cell Biol 2000; 2: 559–562.

    Article  CAS  PubMed  Google Scholar 

  26. Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ et al. Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell 2004; 15: 813–823.

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Alarcon C, Col S, Massague J . Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. J Biol Chem 2003; 278: 42569–42577.

    Article  CAS  PubMed  Google Scholar 

  28. Xu L, Kang Y, Col S, Massague J . Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Mol Cell 2002; 10: 271–282.

    Article  CAS  PubMed  Google Scholar 

  29. Hansson MD, Rzeznicka K, Rosenback M, Hansson M, Sirijovski N . PCR-mediated deletion of plasmid DNA. Anal Biochem 2008; 375: 373–375.

    Article  CAS  PubMed  Google Scholar 

  30. Lee DK, Kim BC, Kim IY, Cho EA, Satterwhite DJ, Kim SJ . The human papilloma virus E7 oncoprotein inhibits transforming growth factor-beta signaling by blocking binding of the Smad complex to its target sequence. J Biol Chem 2002; 277: 38557–38564.

    Article  CAS  PubMed  Google Scholar 

  31. Falanga V, Schrayer D, Cha J, Butmarc J, Carson P, Roberts AB et al. Full-thickness wounding of the mouse tail as a model for delayed wound healing: accelerated wound closure in Smad3 knock-out mice. Wound Repair Regen 2004; 12: 320–326.

    Article  PubMed  Google Scholar 

  32. Jin W, Kim GM, Kim MS, Lim MH, Yun C, Jeong J et al. TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 2010; 31: 1939–1947.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation grant of Korea (2009-0081756 and 2011-0014281) funded by the Korea government. We thank H Kim, W Joo, Y Kim and J Park for their technical supporting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-J Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, J., Park, S., Kim, S. et al. CBL enhances breast tumor formation by inhibiting tumor suppressive activity of TGF-β signaling. Oncogene 31, 5123–5131 (2012). https://doi.org/10.1038/onc.2012.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.18

Keywords

This article is cited by

Search

Quick links