Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer

Abstract

Expression of E-cadherin, a hallmark of epithelial–mesenchymal transition (EMT), is often lost due to promoter DNA methylation in basal-like breast cancer (BLBC), which contributes to the metastatic advantage of this disease; however, the underlying mechanism remains unclear. Here, we identified that Snail interacted with Suv39H1 (suppressor of variegation 3-9 homolog 1), a major methyltransferase responsible for H3K9me3 that intimately links to DNA methylation. We demonstrated that the SNAG domain of Snail and the SET domain of Suv39H1 were required for their mutual interactions. We found that H3K9me3 and DNA methylation on the E-cadherin promoter were higher in BLBC cell lines. We showed that Snail interacted with Suv39H1 and recruited it to the E-cadherin promoter for transcriptional repression. Knockdown of Suv39H1 restored E-cadherin expression by blocking H3K9me3 and DNA methylation and resulted in the inhibition of cell migration, invasion and metastasis of BLBC. Our study not only reveals a critical mechanism underlying the epigenetic regulation of EMT, but also paves a way for the development of new treatment strategies against this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

BLBC:

basal-like breast cancer

ChIP:

chromatin immunoprecipitation

EMT:

epithelial–mesenchymal transition

LSD1:

lysine-specific demethylase 1

Suv39H1:

suppressor of variegation 3-9 homolog 1.

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  2. Nieto MA . The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002; 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  3. Peinado H, Olmeda D, Cano A . Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  5. Kalluri R, Weinberg RA . The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Zhou BP . New insights of epithelial-mesenchymal transition in cancer metastasis. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 643–650.

    Article  CAS  Google Scholar 

  8. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 2008; 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  9. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 2005; 8: 197–209.

    Article  CAS  PubMed  Google Scholar 

  11. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  12. Yang J, Weinberg RA . Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14: 818–829.

    Article  CAS  PubMed  Google Scholar 

  13. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26: 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez-Novoa JM, Nieto MA . Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 2009; 1: 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Deng J, Rychahou PG, Qiu S, Evers BM, Zhou BP . Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 2009; 15: 416–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Feinberg AP . Phenotypic plasticity and the epigenetics of human disease. Nature 2007; 447: 433–440.

    Article  CAS  PubMed  Google Scholar 

  17. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng X, Blumenthal RM . Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 2010; 49: 2999–3008.

    Article  CAS  PubMed  Google Scholar 

  19. Eissenberg JC, Shilatifard A . Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol 2010; 339: 240–249.

    Article  CAS  PubMed  Google Scholar 

  20. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT et al. Dynamic changes in the human methylome during differentiation. Genome Res 2010; 20: 320–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruthenburg AJ, Allis CD, Wysocka J . Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 2007; 25: 15–30.

    Article  CAS  PubMed  Google Scholar 

  22. Cedar H, Bergman Y . Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295–304.

    Article  CAS  PubMed  Google Scholar 

  23. McCabe MT, Brandes JC, Vertino PM . Cancer DNA methylation: molecular mechanisms and clinical implications. Clin Cancer Res 2009; 15: 3927–3937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bergamaschi A, Hjortland GO, Triulzi T, Sorlie T, Johnsen H, Ree AH et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol 2009; 3: 469–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, Neve RM et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 2008; 25: 629–642.

    Article  CAS  PubMed  Google Scholar 

  26. Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 2009; 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  28. Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 2008; 214: 25–37.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Zhou BP . Epithelial-mesenchymal transition in breast cancer progression and metastasis. Chin J Cancer 2011; 30: 603–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI et al. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J. 2010; 29: 1803–1816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schafer C et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 2007; 26: 103–115.

    Article  CAS  PubMed  Google Scholar 

  32. Barrallo-Gimeno A, Nieto MA . Evolutionary history of the Snail/Scratch superfamily. Trends Genet 2009; 25: 248–252.

    Article  CAS  PubMed  Google Scholar 

  33. Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo WL et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 2006; 10: 529–541.

    Article  CAS  PubMed  Google Scholar 

  34. Mullins M, Perreard L, Quackenbush JF, Gauthier N, Bayer S, Ellis M et al. Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues. Clin Chem 2007; 53: 1273–1279.

    Article  CAS  PubMed  Google Scholar 

  35. Dillon SC, Zhang X, Trievel RC, Cheng X . The ET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005; 6: 227.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shinkai Y, Tachibana M . H3K9 methyltransferase G9a and the related molecule GLP. Genes Dev 2011; 25: 781–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L, Zeng H et al. Structural biology of human H3K9 methyltransferases. PLoS One 2010; 5: e8570.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bindels S, Mestdagt M, Vandewalle C, Jacobs N, Volders L, Noel A et al. Regulation of vimentin by SIP1 in human epithelial breast tumor cells. Oncogene 2006; 25: 4975–4985.

    Article  CAS  PubMed  Google Scholar 

  39. Xie L, Law BK, Aakre ME, Edgerton M, Shyr Y, Bhowmick NA et al. Transforming growth factor beta-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Res 2003; 5: R187–R198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  PubMed  Google Scholar 

  41. Lombaerts M, van Wezel T, Philippo K, Dierssen JW, Zimmerman RM, Oosting J et al. E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines. Br J Cancer 2006; 94: 661–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H et al. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 2007; 9: R65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A . Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3-9. Nat Chem Biol 2005; 1: 143–145.

    Article  CAS  PubMed  Google Scholar 

  46. Forneris F, Binda C, Battaglioli E, Mattevi A . LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci 2008; 33: 181–189.

    Article  CAS  PubMed  Google Scholar 

  47. Martin C, Zhang Y . The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005; 6: 838–849.

    Article  CAS  PubMed  Google Scholar 

  48. Dodge JE, Kang YK, Beppu H, Lei H, Li E . Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 2004; 24: 2478–2486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 2002; 16: 1779–1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 2005; 19: 815–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003; 12: 1577–1589.

    Article  CAS  PubMed  Google Scholar 

  52. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 2000; 406: 593–599.

    Article  CAS  PubMed  Google Scholar 

  53. Fritsch L, Robin P, Mathieu JR, Souidi M, Hinaux H, Rougeulle C et al. A subset of the histone H3 lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1 participate in a multimeric complex. Mol Cell 2010; 37: 46–56.

    Article  CAS  PubMed  Google Scholar 

  54. Kouzarides T . Chromatin modifications and their function. Cell 2007; 128: 693–705.

    Article  CAS  PubMed  Google Scholar 

  55. Fuks F . DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005; 15: 490–495.

    Article  CAS  PubMed  Google Scholar 

  56. Jiao Y, Shi C, Edil BH, de Wilde RF, Klimstra DS, Maitra A et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 2011; 331: 1199–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330: 228–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363: 1532–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Margueron R, Reinberg D . The Polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wu Y, Evers BM, Zhou BP . Small C-terminal domain phosphatase enhances snail activity through dephosphorylation. J Biol Chem 2009; 284: 640–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  62. Xia W, Chen JS, Zhou X, Sun PR, Lee DF, Liao Y et al. Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 2004; 10: 3815–3824.

    Article  CAS  PubMed  Google Scholar 

  63. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY et al. Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 2006, Chapter 5:Unit 5.6.

  65. DeLano WL . Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 2002; 12: 14–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Nathan L Vanderford for critical reading and editing of this manuscript. This work was supported by grants from NIH (RO1CA125454), Susan G Komen Foundation (KG081310), and Mary Kay Ash Foundation (to BP Zhou).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B P Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, C., Wu, Y., Wang, Y. et al. Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 32, 1351–1362 (2013). https://doi.org/10.1038/onc.2012.169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.169

Keywords

This article is cited by

Search

Quick links