Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor

Abstract

Metastasis is a major clinical obstacle in the treatment of gastric cancer (GC) and it accounts for the majority of cancer-related mortality. MicroRNAs have recently emerged as regulators of metastasis by acting on multiple signaling pathways. In this study, we found that miR-7 is significantly downregulated in highly metastatic GC cell lines and metastatic tissues. Both gain-of-function and loss-of-function experiments showed that increased miR-7 expression significantly reduced GC cell migration and invasion, whereas decreased miR-7 expression dramatically enhanced cell migration and invasion. In vivo metastasis assays also demonstrated that overexpression of miR-7 markedly inhibited GC metastasis. Moreover, the insulin-like growth factor-1 receptor (IGF1R) oncogene, which is often mutated or amplified in human cancers and functions as an important regulator of cell growth and tumor invasion, was identified as a direct target of miR-7. Silencing of IGF1R using small interefering RNA (siRNA) recapitulated the anti-metastatic function of miR-7, whereas restoring the IGF1R expression attenuated the function of miR-7 in GC cells. Furthermore, we found that suppression of Snail by miR-7, through targeting IGF1R, increased E-cadherin expression and partially reversed the epithelial–mesenchymal transition (EMT). Finally, analyses of miR-7 and IGF1R levels in human primary GC with matched lymph node metastasis tissue arrays revealed that miR-7 is inversely correlated with IGF1R expression. The present study provides insight into the specific biological behavior of miR-7 in EMT and tumor metastasis. Targeting this novel miR-7/IGF1R/Snail axis would be helpful as a therapeutic approach to block GC metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shah MA, Ajani JA . Gastric cancer--an enigmatic and heterogeneous disease. JAMA 2010; 303: 1753–1754.

    Article  CAS  PubMed  Google Scholar 

  2. Peinado H, Olmeda D, Snail Cano A . Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 2007; 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  3. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  4. Thiery JP, Sleeman JP . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  5. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  6. Esquela-Kerscher A, Slack FJ . Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259–269.

    Article  CAS  PubMed  Google Scholar 

  7. White NM, Fatoohi E, Metias M, Jung K, Stephan C, Yousef GM . Metastamirs: a stepping stone towards improved cancer management. Nat Rev Clin Oncol 2011; 8: 75–84.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY . MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 2008; 18: 350–359.

    Article  CAS  PubMed  Google Scholar 

  9. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008; 27: 2128–2136.

    Article  CAS  PubMed  Google Scholar 

  10. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28: 5369–5380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. RAS is regulated by the let-7 microRNA family. Cell 2005; 120: 635–647.

    Article  CAS  PubMed  Google Scholar 

  13. Liang S, He L, Zhao X, Miao Y, Gu Y, Guo C et al. MicroRNA let-7f inhibits tumor invasion and metastasis by targeting MYH9 in human gastric cancer. PLoS One 2011; 6: e18409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sampson VB, Rong NH, Han J, Yang Q, Aris V, Soteropoulos P et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res 2007; 67: 9762–9770.

    Article  CAS  PubMed  Google Scholar 

  15. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  16. Saydam O, Senol O, Wurdinger T, Mizrak A, Ozdener GB, Stemmer-Rachamimov AO et al. miRNA-7 attenuation in Schwannoma tumors stimulates growth by upregulating three oncogenic signaling pathways. Cancer Res 2011; 71: 852–861.

    Article  CAS  PubMed  Google Scholar 

  17. Xiong S, Zheng Y, Jiang P, Liu R, Liu X, Chu Y . MicroRNA-7 inhibits the growth of human non-small cell lung cancer A549 cells through targeting BCL-2. Int J Biol Sci 2011; 7: 805–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Foekens JA, Sieuwerts AM, Smid M, Look MP, de Weerd V, Boersma AW et al. Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer. Proc Natl Acad Sci USA 2008; 105: 13021–13026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reddy SD, Ohshiro K, Rayala SK, Kumar R . MicroRNA-7 a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res 2008; 68: 8195–8200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Veerla S, Lindgren D, Kvist A, Frigyesi A, Staaf J, Persson H et al. MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer 2009; 124: 2236–2242.

    Article  CAS  PubMed  Google Scholar 

  21. Annunziata M, Granata R, Ghigo E . The IGF system. Acta Diabetol 2011; 48: 1–9.

    Article  CAS  PubMed  Google Scholar 

  22. Werner H, Bruchim I . The insulin-like growth factor-I receptor as an oncogene. Arch Physiol Biochem 2009; 115: 58–71.

    Article  CAS  PubMed  Google Scholar 

  23. Samani AA, Yakar S, LeRoith D, Brodt P . The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007; 28: 20–47.

    Article  CAS  PubMed  Google Scholar 

  24. Li R, Pourpak A, Morris SW . Inhibition of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase as a novel cancer therapy approach. J Med Chem 2009; 52: 4981–5004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 2010; 6: e1000879.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bai F, Guo X, Yang L, Wang J, Shi Y, Zhang F et al. Establishment and characterization of a high metastatic potential in the peritoneum for human gastric cancer by orthotopic tumor cell implantation. Dig Dis Sci 2007; 52: 1571–1578.

    Article  PubMed  Google Scholar 

  27. Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L . IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 2001; 20: 4942–4950.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol 2007; 27: 3165–3175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guled M, Lahti L, Lindholm PM, Salmenkivi K, Bagwan I, Nicholson AG et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer 2009; 48: 615–623.

    Article  CAS  PubMed  Google Scholar 

  31. Wu XM, Shao XQ, Meng XX, Zhang XN, Zhu L, Liu SX et al. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol Sin 2011; 32: 259–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duncavage E, Goodgame B, Sezhiyan A, Govindan R, Pfeifer J . Use of microRNA expression levels to predict outcomes in resected stage I non-small cell lung cancer. J Thorac Oncol 2010; 5: 1755–1763.

    Article  PubMed  Google Scholar 

  33. Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 2008; 68: 3566–3572.

    Article  CAS  PubMed  Google Scholar 

  34. Chaudhuri K, Chatterjee R . MicroRNA detection and target prediction: integration of computational and experimental approaches. Dna Cell Biol 2007; 26: 321–337.

    Article  CAS  PubMed  Google Scholar 

  35. Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM . Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 2009; 106: 13052–13057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu H, Sun S, Tu K, Gao Y, Xie B, Krainer AR et al. A splicing-independent function of SF2/ASF in microRNA processing. Mol Cell 2010; 38: 67–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS, Leedman PJ . Regulation of epidermal growth factor receptor signaling in human cancer cells by microRNA-7. J Biol Chem 2009; 284: 5731–5741.

    Article  CAS  PubMed  Google Scholar 

  38. Sutherland BW, Knoblaugh SE, Kaplan-Lefko PJ, Wang F, Holzenberger M, Greenberg NM . Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Res 2008; 68: 3495–3504.

    Article  CAS  PubMed  Google Scholar 

  39. Baker J, Liu JP, Robertson EJ, Efstratiadis A . Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993; 75: 73–82.

    Article  CAS  PubMed  Google Scholar 

  40. Morrione A, DeAngelis T, Baserga R . Failure of the bovine papillomavirus to transform mouse embryo fibroblasts with a targeted disruption of the insulin-like growth factor I receptor genes. J Virol 1995; 69: 5300–5303.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunn SE, Ehrlich M, Sharp NJ, Reiss K, Solomon G, Hawkins R et al. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 1998; 58: 3353–3361.

    CAS  PubMed  Google Scholar 

  42. Fidler IJ . The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3: 453–458.

    Article  CAS  PubMed  Google Scholar 

  43. Schmalhofer O, Brabletz S, T Brabletz . E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28: 151–166.

    Article  CAS  PubMed  Google Scholar 

  44. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  45. de Herreros AG, Peiro S, Nassour M, Savagner P . Snail family regulation and epithelial mesenchymal transitions in breast cancer progression. J Mammary Gland Biol Neoplasia 2010; 15: 135–147.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang SY, Miah A, Pabari A, Winslet M . Growth factors and their receptors in cancer metastases. Front Biosci 2011; 16: 531–538.

    Article  CAS  Google Scholar 

  47. Tang Y, Zhang D, Fallavollita L, Brodt P . Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Res 2003; 63: 1166–1171.

    CAS  PubMed  Google Scholar 

  48. Zhang D, Bar-Eli M, Meloche S, Brodt P . Dual regulation of MMP-2 expression by the type 1 insulin-like growth factor receptor: the phosphatidylinositol 3-kinase/Akt and Raf/ERK pathways transmit opposing signals. J Biol Chem 2004; 279: 19683–19690.

    Article  CAS  PubMed  Google Scholar 

  49. Dunn SE, Torres JV, Nihei N, Barrett JC . The insulin-like growth factor-1 elevates urokinase-type plasminogen activator-1 in human breast cancer cells: a new avenue for breast cancer therapy. Mol Carcinog 2000; 27: 10–17.

    Article  CAS  PubMed  Google Scholar 

  50. Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res 2005; 65: 7775–7781.

    Article  CAS  PubMed  Google Scholar 

  51. He L, Wang H, Jin H, Guo C, Xie H, Yan K et al. CIAPIN1 inhibits the growth and proliferation of clear cell renal cell carcinoma. Cancer Lett 2009; 276: 88–94.

    Article  CAS  PubMed  Google Scholar 

  52. Aisagbonhi O, Rai M, Ryzhov S, Atria N, Feoktistov I, Hatzopoulos AK . Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 2011; 4: 469–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Packeisen J, Buerger H, Krech R, Boecker W . Tissue microarrays: a new approach for quality control in immunohistochemistry. J Clin Pathol 2002; 55: 613–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr Tiziana Deangelis from Tomas Jefferson University for providing the pcDNA3-IGF1R plasmid. We thank Professor Zengshan Li and Professor Zhe Wang from Xijing Hospital for their help with pathological analyses. We thank Qing Ye from the Fourth Military Medical University for excellent statistical assistance. This work was supported by the National 973 Project of China (No. 2010CB529300, 02, 05, 06) and the National Natural Science Foundation of China (No. 81030044, 30970149, 30900675).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Nie or D Fan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Dou, W., He, L. et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 32, 1363–1372 (2013). https://doi.org/10.1038/onc.2012.156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.156

Keywords

This article is cited by

Search

Quick links