Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal–epithelial transition in breast cancer cells

Abstract

The epithelial–mesenchymal transition (EMT) correlates with disruption of cell–cell adhesion, loss of cell polarity and development of epithelial cell malignancy. Identifying novel molecules that inhibit EMT has profound potential for developing mechanism-based therapeutics. We previously demonstrated that the endoplasmic reticulum protein 29 (ERp29) is a novel factor that can drive mesenchymal–epithelial transition (MET) and induce cell growth arrest in MDA-MB-231 cells. Here, we show that ERp29 is an important molecule in establishing epithelial cell integrity during the MET. We demonstrate that ERp29 regulates MET in a cell context-dependent manner. ERp29 overexpression induced a complete MET in mesenchymal MDA-MB-231 cells through downregulating the expression of transcriptional repressors (for example, Slug, Snai1, ZEB2 and Twist) of E-cadherin. In contrast, overexpression of ERp29 induces incomplete MET in basal-like BT549 cells in which the expression of EMT-related markers (for example, vimentin; cytokeratin 19 (CK19) and E-cadherin) and the transcriptional repressors of E-cadherin were not altered. However, ERp29 overexpression in both cell-types resulted in loss of filamentous stress fibers, formation of cortical actin and restoration of an epithelial phenotype. Mechanistic studies revealed that overexpression of ERp29 in both cell-types upregulated the expression of TJ proteins (zonula-occludens-1 (ZO-1) and occludin) and the core apical–basal polarity proteins (Par3 and Scribble) at the membrane to enhance cell–cell contact and cell polarization. Knockdown of ERp29 in the epithelial MCF-7 cells decreased the expression of these proteins, leading to the disruption of cell–cell adhesion. Taken together, ERp29 is a novel molecule that regulates MET and epithelial cell integrity in breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Garrod D, Chidgey M, North A . Desmosomes: differentiation, development, dynamics and disease. Curr Opin Cell Biol 1996; 8: 670–678.

    Article  CAS  Google Scholar 

  2. Imhof BA, Vollmers HP, Goodman SL, Birchmeier W . Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell 1983; 35: 667–675.

    Article  CAS  Google Scholar 

  3. Tsuji T, Ibaragi S, Hu GF . Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 2009; 15: 7135–7139.

    Article  Google Scholar 

  4. Thiery JP . Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2: 442–454.

    Article  CAS  Google Scholar 

  5. Frisch SM, Screaton RA . Anoikis mechanisms. Curr Opin Cell Biol 2001; 13: 555–562.

    Article  CAS  Google Scholar 

  6. Barrallo-Gimeno A, Nieto MA . The Snail genes as inducers of cell movement and survival: implications in development and cancer. Development 2005; 132: 3151–3161.

    Article  CAS  Google Scholar 

  7. Chaffer CL, Dopheide B, McCulloch DR, Lee AB, Moseley JM, Thompson EW et al. Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clin Exp Metastasis 2005; 22: 115–125.

    Article  CAS  Google Scholar 

  8. Friedl P, Wolf K . Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 2003; 3: 362–374.

    Article  CAS  Google Scholar 

  9. Graff JR, Gabrielson E, Fujii H, Baylin SB, Herman JG . Methylation patterns of the E-cadherin 5’CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 2000; 275: 2727–2732.

    Article  CAS  Google Scholar 

  10. De Craene B, van Roy F, Berx G . Unraveling signalling cascades for the Snail family of transcription factors. Cell Signal 2005; 17: 535–547.

    Article  CAS  Google Scholar 

  11. Huber MA, Kraut N, Beug H . Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 2005; 17: 548–558.

    Article  CAS  Google Scholar 

  12. Thiery JP, Sleeman J . Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131–142.

    Article  CAS  Google Scholar 

  13. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M et al. The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007; 26: 6979–6988.

    Article  CAS  Google Scholar 

  14. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2: 76–83.

    Article  CAS  Google Scholar 

  15. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. The two-handed E box binding zinc Wnger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7: 1267–1278.

    Article  CAS  Google Scholar 

  16. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M et al. δEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005; 24: 2375–2385.

    Article  CAS  Google Scholar 

  17. Auersperg N, Pan J, Grove BD, Peterson T, Fisher J, Maines-Bandiera S et al. E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci USA 1999; 96: 6249–6254.

    Article  CAS  Google Scholar 

  18. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  Google Scholar 

  19. Hirohashi S . Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 1998; 153: 333–339.

    Article  CAS  Google Scholar 

  20. Blanco MJ, Moreno-Bueno G, Sarrio D, Locascio A, Cano A, Palacios J et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21: 3241–3246.

    Article  CAS  Google Scholar 

  21. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117: 927–939.

    Article  CAS  Google Scholar 

  22. Coradini D, Casarsa C, Oriana S . Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 2011; 32: 552–564.

    Article  CAS  Google Scholar 

  23. Cereijido M, Valdes J, Shoshani L, Contreras RG . Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 1998; 60: 161–177.

    Article  CAS  Google Scholar 

  24. Tanos B, Rodriguez-Boulan E . The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27: 6939–6957.

    Article  CAS  Google Scholar 

  25. Gibson MC, Perrimon N . Apicobasal polarization: epithelial form and function. Curr Opin Cell Biol 2003; 15: 747–752.

    Article  CAS  Google Scholar 

  26. Shin K, Fogg VC, Margolis B . Tight junctions and cell polarity. Annu Rev Cell Dev Biol 2006; 22: 207–235.

    Article  CAS  Google Scholar 

  27. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT . Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 2005; 118: 4283–4293.

    Article  CAS  Google Scholar 

  28. Baryshev M, Sargsyan E, Mkrtchian S . ERp29 is an essential endoplasmic reticulum factor regulating secretion of thyroglobulin. Biochem Biophys Res Commun 2006; 340: 617–624.

    Article  CAS  Google Scholar 

  29. Shnyder SD, Mangum JE, Hubbard MJ . Triplex profiling of functionally distinct chaperones (ERp29/PDI/BiP) reveals marked heterogeneity of the endoplasmic reticulum proteome in cancer. J Proteome Res 2008; 7: 3364–3372.

    Article  CAS  Google Scholar 

  30. Bambang IF, Xu S, Zhou J, Salto-Tellez M, Sethi SK, Zhang D . Overexpression of endoplasmic reticulum protein 29 regulates mesenchymal-epithelial transition and suppresses xenograft tumor growth of invasive breast cancer cells. Lab Invest 2009; 89: 1229–1242.

    Article  CAS  Google Scholar 

  31. Farmaki E, Mkrtchian S, Papazian I, Papavassiliou AG, Kiaris H . ERp29 regulates response to doxorubicin by a PERK-mediated mechanism. Biochim Biophys Acta 2011; 1813: 1165–1171.

    Article  CAS  Google Scholar 

  32. Zhang D, Putti TC . Over-expression of ERp29 attenuates doxorubicin-induced cell apoptosis through up-regulation of Hsp27 in breast cancer cells. Exp Cell Res 2010; 316: 3522–3531.

    Article  CAS  Google Scholar 

  33. Qi L, Wu P, Zhang X, Qiu Y, Jiang W, Huang D et al. Inhibiting ERp29 expression enhances radiosensitivity in human nasopharyngeal carcinoma cell lines. Med Oncol 2012; 29: 721–728.

    Article  CAS  Google Scholar 

  34. Gao D, Bambang IF, Putti TC, Lee YK, Richardson DR, Zhang D . ERp29 induces breast cancer cell growth arrest and survival via modulation ofactivation of p38 and up-regulation of ER stress protein p58IPK. Lab Invest 2012; 92: 200–213.

    Article  CAS  Google Scholar 

  35. Das S, Smith TD, Sarma JD, Ritzenthaler JD, Maza J, Kaplan BE et al. ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell 2009; 20: 2593–2604.

    Article  CAS  Google Scholar 

  36. Lacroix M, Leclercq G . Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res Treat 2004; 83: 249–289.

    Article  CAS  Google Scholar 

  37. Ross DT, Perou CM . A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis Markers 2001; 17: 99–109.

    Article  CAS  Google Scholar 

  38. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA . Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 1997; 137: 481–492.

    Article  CAS  Google Scholar 

  39. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 2008; 68: 6241–6250.

    Article  CAS  Google Scholar 

  40. Hartsock A, Nelson WJ . Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta 2008; 1778: 660–669.

    Article  CAS  Google Scholar 

  41. Chen YT, Stewart DB, Nelson WJ . Coupling assembly of the E-cadherin/beta-catenin complex to efficient endoplasmic reticulum exit and basal-lateral membrane targeting of E-cadherin in polarized MDCK cells. J Cell Biol 1999; 144: 687–699.

    Article  CAS  Google Scholar 

  42. Joberty G, Petersen C, Gao L, Macara IG . The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2000; 2: 531–539.

    Article  CAS  Google Scholar 

  43. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T . A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2000; 2: 540–547.

    Article  CAS  Google Scholar 

  44. Ohno S . Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr Opin Cell Biol 2001; 13: 641–648.

    Article  CAS  Google Scholar 

  45. Katoh K, Kano Y, Amano M, Kaibuchi K, Fujiwara K . Stress fiber organization regulated by MLCK and Rho-kinase in cultured human fibroblasts. Am J Physiol Cell Physiol 2001; 280: C1669–C1679.

    Article  CAS  Google Scholar 

  46. Watanabe T, Hosoya H, Yonemura S . Regulation of myosin II dynamics by phosphorylation and dephosphorylation of its light chain in epithelial cells. Mol Biol Cell 2007; 18: 605–616.

    Article  CAS  Google Scholar 

  47. Ren XD, Wang R, Li Q, Kahek LA, Kaibuchi K, Clark RA . Disruption of Rho signal transduction upon cell detachment. J Cell Sci 2004; 117: 3511–3518.

    Article  CAS  Google Scholar 

  48. Somlyo AP, Somlyo AV . Ca2+ sensitivity of smooth muscle and nonmuscle myosin II modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 2003; 83: 1325–1358.

    Article  CAS  Google Scholar 

  49. Sells MA, Boyd JT, Chernoff J . p21-Activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 1999; 145: 837–849.

    Article  CAS  Google Scholar 

  50. Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P . Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999; 283: 2083–2085.

    Article  CAS  Google Scholar 

  51. Hunter MP, Zegers MM . Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and β1-integrin-dependent mechanism. Am J Physiol Cell Physiol 2010; 299: C21–C32.

    Article  CAS  Google Scholar 

  52. Niessen CM . Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol 2007; 127: 2525–2532.

    Article  CAS  Google Scholar 

  53. Perez-Moreno M, Jamora C, Fuchs E . Sticky business: orchestrating cellular signals at adherens junctions. Cell 2003; 112: 535–548.

    Article  CAS  Google Scholar 

  54. Swisshelm K, Macek R, Kubbies M . Role of claudins in tumorigenesis. Adv Drug Deliv Rev 2005; 57: 919–928.

    Article  CAS  Google Scholar 

  55. Hoover KB, Liao SY, Bryant PJ . Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153: 1767–1773.

    Article  CAS  Google Scholar 

  56. Martin TA, Watkins G, Mansel RE, Jiang WG . Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer 2004; 40: 2717–2725.

    Article  CAS  Google Scholar 

  57. Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 2004; 116: 457–466.

    Article  CAS  Google Scholar 

  58. Bilder D, Schober M, Perrimon N . Integrated activity of PDZ proteincomplexes regulates epithelial polarity. Nat Cell Biol 2003; 5: 53–58.

    Article  CAS  Google Scholar 

  59. Huang L, Muthuswamy SK . Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 2010; 20: 41–50.

    Article  CAS  Google Scholar 

  60. Royer C, Lu X . Epithelial cell polarity: a major gatekeeper against cancer? Cell Death Differ 2011; 18: 1470–1477.

    Article  CAS  Google Scholar 

  61. Gardiol D, Zacchi A, Petrera F, Stanta G, Banks L . Human discs large and scrib are localized at the same regions in colon mucosa and changes in their expression patterns are correlated with loss of tissue architecture during malignant progression. Int J Cancer 2006; 119: 1285–1290.

    Article  CAS  Google Scholar 

  62. Zen K, Yasui K, Gen Y, Dohi O, Wakabayashi N, Mitsufuji S et al. Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 2009; 28: 2910–2918.

    Article  CAS  Google Scholar 

  63. Rothenberg SM, Mohapatra G, Rivera MN, Winokur D, Greninger P, Nitta M et al. A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res 2010; 70: 2158–2164.

    Article  CAS  Google Scholar 

  64. Simons K, Wandinger-Ness A . Polarized sorting in epithelia. Cell 1990; 62: 207–210.

    Article  CAS  Google Scholar 

  65. Rodriguez-Boulan E, Powell SK . Polarity of epithelial and neuronal cells. Annu Rev Cell Biol 1992; 8: 395–427.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

DRR thanks the National Health and Medical Research Council of Australia for a Senior Principal Research Fellowship. This research was performed in DZ’s laboratory in the National University of Singapore and was sponsored by an Individual Research Grant awarded to DZ from the Agency of Science, Technology and Research-Biomedical Research Council in Singapore (A*STAR-BMRC 07/1/21/19/496).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D R Richardson or D Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bambang, I., Lee, Y., Richardson, D. et al. Endoplasmic reticulum protein 29 regulates epithelial cell integrity during the mesenchymal–epithelial transition in breast cancer cells. Oncogene 32, 1240–1251 (2013). https://doi.org/10.1038/onc.2012.149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.149

Keywords

This article is cited by

Search

Quick links