Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

eIF4F suppression in breast cancer affects maintenance and progression

Abstract

Levels of eukaryotic initiation factor 4E (eIF4E) are frequently elevated in human cancers and in some instances have been associated with poor prognosis and outcome. Here we utilize transgenic and allograft breast cancer models to demonstrate that increased mammalian target of rapamycin (mTOR) signalling can be a significant contributor to breast cancer progression in vivo. Suppressing mTOR activity, as well as levels and activity of the downstream translation regulators, eIF4E and eIF4A, delayed breast cancer progression, onset of associated pulmonary metastasis in vivo and breast cancer cell invasion and migration in vitro. Translation of vascular endothelial growth factor (VEGF), matrix metallopeptidase 9 (MMP9) and cyclin D1 mRNAs, which encode products associated with the metastatic phenotype, is inhibited upon eIF4E suppression. Our results indicate that the mTOR/eIF4F axis is an important contributor to tumor maintenance and progression programs in breast cancer. Targeting this pathway may be of therapeutic benefit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Gingras AC, Raught B, Sonenberg N . eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 1999; 68: 913–963.

    Article  CAS  PubMed  Google Scholar 

  2. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006; 314: 467–471.

    Article  CAS  PubMed  Google Scholar 

  3. Lazaris-Karatzas A, Montine KS, Sonenberg N . Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 1990; 345: 544–547.

    Article  CAS  PubMed  Google Scholar 

  4. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    Article  CAS  PubMed  Google Scholar 

  5. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 2004; 10: 484–486.

    Article  CAS  PubMed  Google Scholar 

  6. Benjamin D, Colombi M, Moroni C, Hall MN . Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868–880.

    Article  CAS  PubMed  Google Scholar 

  7. Wendel HG, Malina A, Zhao Z, Zender L, Kogan SC, Cordon-Cardo C et al. Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 2006; 66: 7639–7646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ilic N, Utermark T, Widlund HR, Roberts TM . PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA 2011; 108: E699–E708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu P, Cheng H, Santiago S, Raeder M, Zhang F, Isabella A et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nat Med 2011; 17: 1116–1120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muellner MK, Uras IZ, Gapp BV, Kerzendorfer C, Smida M, Lechtermann H et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nat Chem Biol 2011; 7: 787–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 1996; 16: 4754–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rosenwald IB . Upregulated expression of the genes encoding translation initiation factors eIF-4E and eIF-2alpha in transformed cells. Cancer Lett 1996; 102: 113–123.

    Article  CAS  PubMed  Google Scholar 

  13. Lin CJ, Cencic R, Mills JR, Robert F, Pelletier J . c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 2008; 68: 5326–5334.

    Article  CAS  PubMed  Google Scholar 

  14. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 2007; 67: 6814–6824.

    Article  CAS  PubMed  Google Scholar 

  15. Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 2004; 5: 553–563.

    Article  CAS  PubMed  Google Scholar 

  16. Armengol G, Rojo F, Castellvi J, Iglesias C, Cuatrecasas M, Pons B et al. 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res 2007; 67: 7551–7555.

    Article  CAS  PubMed  Google Scholar 

  17. Coleman LJ, Peter MB, Teall TJ, Brannan RA, Hanby AM, Honarpisheh H et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br J Cancer 2009; 100: 1393–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pons B, Peg V, Vazquez-Sanchez MA, Lopez-Vicente L, Argelaguet E, Coch L et al. The effect of p-4E-BP1 and p-eIF4E on cell proliferation in a breast cancer model. Int J Oncol 2011; 39: 1337–1345.

    CAS  PubMed  Google Scholar 

  19. Zhou FF, Yan M, Guo GF, Wang F, Qiu HJ, Zheng FM et al. Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells. Med Oncol 2011; 28: 1302–1307.

    Article  CAS  PubMed  Google Scholar 

  20. Dong K, Wang R, Wang X, Lin F, Shen JJ, Gao P et al. Tumor-specific RNAi targeting eIF4E suppresses tumor growth, induces apoptosis and enhances cisplatin cytotoxicity in human breast carcinoma cells. Breast Cancer Res Treat 2009; 113: 443–456.

    Article  CAS  PubMed  Google Scholar 

  21. Zindy P, Berge Y, Allal B, Filleron T, Pierredon S, Cammas A et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res 2011; 71: 4068–4073.

    Article  CAS  PubMed  Google Scholar 

  22. Graff JR, Konicek BW, Vincent TM, Lynch RL, Monteith D, Weir SN et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest 2007; 117: 2638–2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cencic R, Carrier M, Galicia-Vazquez G, Bordeleau ME, Sukarieh R, Bourdeau A et al. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS ONE 2009; 4: e5223.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyoma virus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 2003; 163: 2113–2126.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO et al. Transgenic polyoma middle-T mice model premalignant mammary disease. Cancer Res 2001; 61: 8298–8305.

    CAS  PubMed  Google Scholar 

  27. Lifsted T, Le Voyer T, Williams M, Muller W, Klein-Szanto A, Buetow KH et al. Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 1998; 77: 640–644.

    Article  CAS  PubMed  Google Scholar 

  28. Davie SA, Maglione JE, Manner CK, Young D, Cardiff RD, MacLeod CL et al. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res 2007; 16: 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Veelen W, Korsse SE, van de Laar L, Peppelenbosch MP . The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 2011; 30: 2289–2303.

    Article  CAS  PubMed  Google Scholar 

  30. Knowles MA, Hornigold N, Pitt E . Tuberous sclerosis complex (TSC) gene involvement in sporadic tumours. Biochem Soc Trans 2003; 31 (Part 3): 597–602.

    Article  CAS  PubMed  Google Scholar 

  31. Wienecke R, Guha A, Maize Jr JC, Heideman RL, DeClue JE, Gutmann DH . Reduced TSC RNA and protein in sporadic astrocytomas and ependymomas. Ann Neurol 1997; 42: 230–235.

    Article  CAS  PubMed  Google Scholar 

  32. Chakraborty S, Mohiyuddin SM, Gopinath KS, Kumar A . Involvement of TSC genes and differential expression of other members of the mTOR signaling pathway in oral squamous cell carcinoma. BMC Cancer 2008; 8: 163.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xu Z, Wang M, Wang L, Wang Y, Zhao X, Rao Q et al. Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia. Leuk Res 2009; 33: 891–897.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A et al. Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 2005; 41: 1628–1636.

    Article  CAS  PubMed  Google Scholar 

  35. Dillon RL, Muller WJ . Distinct biological roles for the akt family in mammary tumor progression. Cancer Res 2010; 70: 4260–4264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bordeleau ME, Robert F, Gerard B, Lindqvist L, Chen SM, Wendel HG et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J Clin Invest 2008; 118: 2651–2660.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bordeleau M-E, Mori A, Oberer M, Lindqvist L, Chard LS, Higa T et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nat Chem Biol 2006; 2: 213–220.

    Article  CAS  PubMed  Google Scholar 

  38. Soni A, Akcakanat A, Singh G, Luyimbazi D, Zheng Y, Kim D et al. eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 2008; 7: 1782–1788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Podsypanina K, Politi K, Beverly LJ, Varmus HE . Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc Natl Acad Sci USA 2008; 105: 5242–5247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. De Benedetti A, Graff JR . eIF-4E expression and its role in malignancies and metastases. Oncogene 2004; 23: 3189–3199.

    Article  CAS  PubMed  Google Scholar 

  41. Li BD, Liu L, Dawson M, De Benedetti A . Overexpression of eukaryotic initiation factor 4E (eIF4E) in breast carcinoma. Cancer 1997; 79: 2385–2390.

    Article  CAS  PubMed  Google Scholar 

  42. Price JE, Polyzos A, Zhang RD, Daniels LM . Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. Cancer Res 1990; 50: 717–721.

    CAS  PubMed  Google Scholar 

  43. Webster MA, Hutchinson JN, Rauh MJ, Muthuswamy SK, Anton M, Tortorice CG et al. Requirement for both Shc and phosphatidylinositol 3′ kinase signaling pathways in polyomavirus middle T-mediated mammary tumorigenesis. Mol Cell Biol 1998; 18: 2344–2359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159–168.

    Article  CAS  PubMed  Google Scholar 

  45. Jiang H, Coleman J, Miskimins R, Miskimins WK . Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int 2003; 3: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brown CJ, Lim JJ, Leonard T, Lim HC, Chia CS, Verma CS et al. Stabilizing the eIF4G1 alpha-helix increases its binding affinity with eIF4E: implications for peptidomimetic design strategies. J Mol Biol 2011; 405: 736–753.

    Article  CAS  PubMed  Google Scholar 

  47. Dowling RJ, Topisirovic I, Alain T, Bidinosti M, Fonseca BD, Petroulakis E et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science 2010; 328: 1172–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iliopoulos D, Hirsch HA, Struhl K . Metformin decreases the dose of chemotherapy for prolonging tumor remission in mouse xenografts involving multiple cancer cell types. Cancer Res 2011; 71: 3196–3201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Weigelt B, Warne PH, Downward J . PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 2011; 30: 3222–3233.

    Article  CAS  PubMed  Google Scholar 

  50. Silvera D, Formenti SC, Schneider RJ . Translational control in cancer. Nat Rev Cancer 2010; 10: 254–266.

    Article  CAS  PubMed  Google Scholar 

  51. Graff JR, Boghaert ER, De Benedetti A, Tudor DL, Zimmer CC, Chan SK et al. Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer 1995; 60: 255–263.

    Article  CAS  PubMed  Google Scholar 

  52. Konicek BW, Stephens JR, McNulty AM, Robichaud N, Peery RB, Dumstorf CA et al. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 2011; 71: 1849–1857.

    Article  CAS  PubMed  Google Scholar 

  53. Ko SY, Guo H, Barengo N, Naora H . Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin Cancer Res 2009; 15: 4336–4347.

    Article  CAS  PubMed  Google Scholar 

  54. Graff JR, Konicek BW, Carter JH, Marcusson EG . Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 2008; 68: 631–634.

    Article  CAS  PubMed  Google Scholar 

  55. Andrechek ER, Hardy WR, Siegel PM, Rudnicki MA, Cardiff RD, Muller WJ . Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc Natl Acad Sci USA 2000; 97: 3444–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ . Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res 2009; 69: 5057–5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boyden S . The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 1962; 115: 453–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

WJM is supported by the Canadian Institutes of Health Research (MOP-89791) and a CRC Chair in Molecular Oncology. JAP, Jr thanks the National Institutes of Health (GM-073855) for research support. This work was supported by the Canadian Institutes of Health Research (MOP-106530) and the Canadian Cancer Society Research Institute (CCSRI no. 17099) to JP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Pelletier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasr, Z., Robert, F., Porco, J. et al. eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 32, 861–871 (2013). https://doi.org/10.1038/onc.2012.105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.105

Keywords

This article is cited by

Search

Quick links