Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Activation of p53 following ionizing radiation, but not other stressors, is dependent on the proline-rich domain (PRD)

Abstract

The tumor suppressor protein, p53 is one of the most important cellular defences against malignant transformation. In response to cellular stressors p53 can induce apoptosis, cell cycle arrest or senescence as well as aid in DNA repair. Which p53 function is required for tumor suppression is unclear. The proline-rich domain (PRD) of p53 (residues 58–101) has been reported to be essential for the induction of apoptosis. To determine the importance of the PRD in tumor suppression in vivo we previously generated a mouse containing a 33-amino-acid deletion (residues 55–88) in p53 (mΔpro). We showed that mΔpro mice are protected from T-cell tumors but not late-onset B-cell tumors. Here, we characterize the functionality of the PRD and show that it is important for mediating the p53 response to DNA damage induced by γ-radiation, but not the p53-mediated responses to Ha-Ras expression or oxidative stress. We conclude that the PRD is important for receiving incoming activating signals. Failure of PRD mutants to respond to the activating signaling produced by DNA damage leads to impaired downstream signaling, accumulation of mutations, which potentially leads to late-onset tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lane DP . p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  Google Scholar 

  2. Hollstein M, Sidransky D, Vogelstein B, Harris CC . P53 Mutations in Human Cancers. Science 1991; 253: 49–53.

    Article  CAS  Google Scholar 

  3. Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM . The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990; 63: 1129–1136.

    Article  CAS  Google Scholar 

  4. Malkin D, Li FP, Strong LC, Fraumeni JF, Nelson CE, Kim DH et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–1238.

    Article  CAS  Google Scholar 

  5. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  Google Scholar 

  6. Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 2004; 119: 861–872.

    Article  CAS  Google Scholar 

  7. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor Spectrum Analysis in P53-Mutant Mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  Google Scholar 

  8. Donehower LA, Harvey M, Slagle BL, Mcarthur MJ, Montgomery CA, Butel JS et al. Mice Deficient for P53 Are Developmentally Normal But Susceptible to Spontaneous Tumors. Nature 1992; 356: 215–221.

    Article  CAS  Google Scholar 

  9. Haupt Y, Maya R, Kazaz A, Oren M . Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296–299.

    Article  CAS  Google Scholar 

  10. Braithwaite AW, Royds JA, Jackson P . The p53 story: layers of complexity. Carcinogenesis 2005; 26: 1161–1169.

    Article  CAS  Google Scholar 

  11. Vousden KH, Lane DP . p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8: 275–283.

    Article  CAS  Google Scholar 

  12. Walker K, Levine A . Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci 1996; 93: 15335–15340.

    Article  CAS  Google Scholar 

  13. Baptiste N, Friedlander P, Chen XB, Prives C . The proline-rich domain of p53 is required for cooperation with anti-neoplastic agents to promote apoptosis of tumor cells. Oncogene 2002; 21: 9–21.

    Article  CAS  Google Scholar 

  14. Venot C, Maratrat M, Dureuil C, Conseiller E, Bracco L, Debussche L . The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J 1998; 17: 4668–4679.

    Article  CAS  Google Scholar 

  15. Edwards SJ, Hananeia L, Eccles MR, Zhang YF, Braithwaite AW . The proline-rich region of mouse p53 influences transactivation and apoptosis but is largely dispensable for these functions. Oncogene 2003; 22: 4517–4523.

    Article  CAS  Google Scholar 

  16. Toledo F, Krummel KA, Lee CJ, Liu CW, Rodewald LW, Tang M et al. A mouse p53 mutant lacking the proline-rich domain rescues Mdm4 deficiency and provides insight into the Mdm2-Mdm4-p53 regulatory network. Cancer cell 2006; 9: 273–285.

    Article  CAS  Google Scholar 

  17. Slatter TL, Ganesan P, Holzhauer C, Mehta R, Rubio C, Williams G et al. p53-mediated apoptosis prevents the accumulation of progenitor B cells and B-cell tumors. Cell Death Differ 2010; 17: 540–550.

    Article  CAS  Google Scholar 

  18. Teodoro JG, Shore GC, Branton PE . Adenovirus E1A Proteins Induce Apoptosis by Both P53-Dependent and P53-Independent Mechanisms. Oncogene 1995; 11: 467–474.

    CAS  PubMed  Google Scholar 

  19. Hansen RS, Braithwaite AW . The growth-inhibitory function of p53 is separable from transactivation, apoptosis and suppression of transformation by E1a and Ras. Oncogene 1996; 13: 995–1007.

    CAS  PubMed  Google Scholar 

  20. Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA et al. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334: 124–129.

    Article  CAS  Google Scholar 

  21. Braithwaite AW, Cheetham BF, Li P, Parish CR, Waldronstevens LK, Bellett AJD . Adenovirus-Induced Alterations of the Cell-Growth Cycle - A Requirement for Expression of E1A But Not of E1B. J Virol 1983; 45: 192–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lowe SW, Ruley HE . Stabilization of the P53 Tumor Suppressor Is Induced by Adenovirus-5 E1A and Accompanies Apoptosis. Gene Dev 1993; 7: 535–545.

    Article  CAS  Google Scholar 

  23. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  Google Scholar 

  24. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  Google Scholar 

  25. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 1998; 273: 5858–5868.

    Article  CAS  Google Scholar 

  26. Horn PL, Turker MS, Ogburn CE, Disteche CM, Martin GM . A Cloning Assay for 6-Thioguanine Resistance Provides Evidence Against Certain Somatic Mutational Theories of Aging. J Cell Physiol 1984; 121: 309–315.

    Article  CAS  Google Scholar 

  27. Sakamuro D, Sabbatini P, White E, Prendergast GC . The polyproline region of p53 is required to activate apoptosis but not growth arrest. Oncogene 1997; 15: 887–898.

    Article  CAS  Google Scholar 

  28. Toledo F, Lee CJ, Krummel KA, Rodewald LW, Liu CW, Wahl GM . Mouse mutants reveal that putative protein interaction sites in the p53 proline-rich domain are dispensable for tumor suppression. Mol Cell Biol 2007; 27: 1425–1432.

    Article  CAS  Google Scholar 

  29. Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ . Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 2002; 22: 1834–1843.

    Article  CAS  Google Scholar 

  30. Cordenonsi M, Montagner M, Adorno M, Zacchigna L, Martello G, Mamidi A et al. Integration of TGF-+f and Ras/MAPK Signaling Through p53 Phosphorylation. Science 2007; 315: 840–843.

    Article  CAS  Google Scholar 

  31. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K et al. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 1998; 20: 398–400.

    Article  CAS  Google Scholar 

  32. Lee JH, Paull TT . Direct Activation of the ATM Protein Kinase by the Mre11/Rad50/Nbs1 Complex. Science 2004; 304: 93–96.

    Article  CAS  Google Scholar 

  33. Deng CX, Zhang PM, Harper JW, Elledge SJ, Leder P . Mice Lacking P21(C/P1/Waf1) Undergo Normal Development, But Are Defective in G1 Checkpoint Control. Cell 1995; 82: 675–684.

    Article  CAS  Google Scholar 

  34. Michalak EM, Villunger A, Adams JM, Strasser A . In several cell types tumour suppressor p53 induces apoptosis largely via Puma but Noxa can contribute. Cell Death Differ 2008; 15: 1019–1029.

    Article  CAS  Google Scholar 

  35. Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK et al. Mice lacking the p53-effector gene Gadd45a develop a Lupus-like syndrome. Immunity 2002; 16: 499–508.

    Article  CAS  Google Scholar 

  36. Xu J . Preparation, Culture, and Immortalization of Mouse Embryonic Fibroblasts. John Wiley & Sons Inc., New York, NY, USA, 2001.

    Google Scholar 

  37. Samuelson AV, Lowe SW . Selective induction of p53 and chemosensitivity in RB-deficient cells by E1A mutants unable to bind the RB-related proteins. Proc Natl Acad Sci USA 1997; 94: 12094–12099.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A W Braithwaite.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, H., Mehta, R., Neumann, A. et al. Activation of p53 following ionizing radiation, but not other stressors, is dependent on the proline-rich domain (PRD). Oncogene 32, 827–836 (2013). https://doi.org/10.1038/onc.2012.102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.102

Keywords

This article is cited by

Search

Quick links