Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer

Abstract

LKB1/STK11 is a tumor suppressor and a negative regulator of mammalian target of rapamycin signaling. It is inactivated in 30% of lung cancer cell lines but only 5–15% of primary lung adenocarcinomas. There is evidence that homozygous deletion (HD) of chromosome 19p at the LKB locus contributes to the inactivation of the gene in primary human lung cancers. Here, we used several complementary genetic approaches to assess the LKB1 locus in primary non-small cell lung cancers (NSCLCs). We first analyzed 124 NSCLC cases for allelic imbalance using eight microsatellite markers on chromosome 19p, which revealed an overall rate of 65% (80 of 124) loss of heterozygosity (LOH). We next used chromogenic in situ hybridization (CISH) to directly examine the chromosomal status of the LKB1 locus. In all, 65 of 124 LOH tested samples were available for CISH and 58 of those (89%) showed either loss of one copy of chromosome 19p (LOH, 40 of 65 cases, 62%) or both copies (HD 18 of 65 cases, 28%). The occurrence of HD was significantly more frequent in Caucasian (35%) than in African-American patients (6%) (P=0.04). A total of 62 of 124 samples with LOH at one or both markers immediately flanking the LKB1 gene were further analyzed by directly sequencing the complete coding region, which identified 7 of 62 (11%) tumors with somatic mutations in the gene. Jointly, our data identified total inactivation of the LKB1 gene by either HD or LOH with somatic mutation in 39% of tested samples, whereas loss of chromosome 19p region by HD or LOH at the LKB1 region occured in 90% of NSCLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). LKB1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  • Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R et al. (1999). LKB1 somatic mutations in sporadic tumors. Am J Pathol 154: 677–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig AE et al. (1998). Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res 58: 2087–2090.

    CAS  PubMed  Google Scholar 

  • Bignell GR, Barfoot R, Seal S, Collins N, Warren W, Stratton MR . (1998). Low frequency of somatic mutations in the LKB1/Peutz-Jeghers syndrome gene in sporadic breast cancer. Cancer Res 58: 1384–1386.

    CAS  PubMed  Google Scholar 

  • Cairns P, Polascik TJ, Eby Y, Tokino K, Califano J, Merlo A et al. (1995). Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet 11: 210–212.

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Medina PP, Pio R, Montuenga LM, Sanchez-Cespedes M . (2004). Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23: 4037–4040.

    Article  CAS  PubMed  Google Scholar 

  • Conde E, Suarez-Gauthier A, Garcia-Garcia E, Lopez-Rios F, Lopez-Encuentra A, Garcia-Lujan R et al. (2007). Specific pattern of LKB1 and phospho-acetyl-CoA carboxylase protein immunostaining in human normal tissues and lung carcinomas. Hum Pathol 38: 1351–1360.

    Article  CAS  PubMed  Google Scholar 

  • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL . (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18: 1533–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G et al. (2005). Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65: 7591–7595.

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455: 1069–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill RK, Vazquez MF, Kramer A, Hames M, Zhang L, Heselmeyer-Haddad K et al. (2008). The use of genetic markers to identify lung cancer in fine needle aspiration samples. Clin Cancer Res 14: 7481–7487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaros S, Cirrincione GM, Palanca A, Metzger D, Reisman D . (2008). Targeted knockout of BRG1 potentiates lung cancer development. Cancer Res 68: 3689–3696.

    Article  CAS  PubMed  Google Scholar 

  • Guldberg P, thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J . (1999). Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene 18: 1777–1780.

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy S, Hezel AF, Sahin E, Berger JH, Bosenberg MW, Bardeesy N . (2008). LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res 68: 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E et al. (1996). DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271: 350–353.

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H . (2009). LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89: 777–798.

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P et al. (2007). LKB1 modulates lung cancer differentiation and metastasis. Nature 448: 807–810.

    Article  CAS  PubMed  Google Scholar 

  • Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N et al. (2006). Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26: 8217–8227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivunen JP, Kim J, Lee J, Rogers AM, Park JO, Zhao X et al. (2008). Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br J Cancer 99: 245–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Launonen V . (2005). Mutations in the human LKB1/STK11 gene. Hum Mutat 26: 291–297.

    Article  CAS  PubMed  Google Scholar 

  • Levin NA, Brzoska PM, Warnock ML, Gray JW, Christman MF . (1995). Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosomes Cancer 13: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  PubMed  Google Scholar 

  • Lim W, Hearle N, Shah B, Murday V, Hodgson SV, Lucassen A et al. (2003). Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer 89: 308–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukeis R, Irving L, Garson M, Hasthorpe S . (1990). Cytogenetics of non-small cell lung cancer: analysis of consistent non-random abnormalities. Genes Chromosomes Cancer 2: 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Luukko K, Ylikorkala A, Tiainen M, Makela TP . (1999). Expression of LKB1 and PTEN tumor suppressor genes during mouse embryonic development. Mech Dev 83: 187–190.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. (2007). Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26: 5911–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mechanic LE, Marrogi AJ, Welsh JA, Bowman ED, Khan MA, Enewold L et al. (2005). Polymorphisms in XPD and TP53 and mutation in human lung cancer. Carcinogenesis 26: 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. (2008). Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 29: 617–622.

    Article  CAS  PubMed  Google Scholar 

  • Rowan A, Bataille V, MacKie R, Healy E, Bicknell D, Bodmer W et al. (1999). Somatic mutations in the Peutz-Jeghers (LKB1/STKII) gene in sporadic malignant melanomas. J Invest Dermatol 112: 509–511.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Ahrendt SA, Piantadosi S, Rosell R, Monzo M, Wu L et al. (2001). Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Res 61: 1309–1313.

    CAS  PubMed  Google Scholar 

  • Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. (2002). Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. (2004a). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA et al. (2004b). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101: 3329–3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    Article  CAS  PubMed  Google Scholar 

  • Virmani AK, Fong KM, Kodagoda D, McIntire D, Hung J, Tonk V et al. (1998). Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes Chromosomes Cancer 21: 308–319.

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Taylor F, Churchman M, Norbury G, Tomlinson I . (1998). Genetic pathways of colorectal carcinogenesis rarely involve the PTEN and LKB1 genes outside the inherited hamartoma syndromes. Am J Pathol 153: 363–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T et al. (2009). Somatic LKB1 mutations promote cervical cancer progression. PLoS One 4: e5137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. (2003). LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Schafer-Hales K, Khuri FR, Zhou W, Vertino PM, Marcus AI . (2008). The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res 68: 740–748.

    Article  CAS  PubMed  Google Scholar 

  • Zhong D, Guo L, de Aguirre I, Liu X, Lamb N, Sun SY et al. (2006). LKB1 mutation in large cell carcinoma of the lung. Lung Cancer 53: 285–294.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Cottrell, Ray Jones, Audrey Salabes and Mike Lipsky at University of Maryland Medical Center for tissue collection and clinical information. We thank the members of Dr. Thomas Reid's lab for technical support during the course of this study. We thank Ms Stacy Johnson for editorial and graphical/technical assistance. The current addresses are RKG, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, Bethesda, MD 20892–4258; SHY, Wonkwang University Hospital, Department of Pulmonary and Critical Care Medicine, Iksan, South Korea; HSJ, Laboratory of Biochemistry and Cell Biology, Kyungpook National University, School of Medicine, Deagu, South Korea; SRC, Laboratory of Pathology, National Cancer Institute, Bethesda, MD; AS, Department of Medical Genetics, Tehran University of Medical Sciences, Cancer Institute Hospital, Tehran, Iran; TVD, J. Craig Venter Institute, Rockville, MD; KMH, National Cancer Center, Cancer Cell and Molecular Biology Branch, Goyang, Korea; JF, Toyama University Hospital, Department of Surgical Pathology, Toyama, Japan; and JHZ, St. Jude Children's Research Hospital, Biotechnology, Memphis, TN. This work was supported by intramural research funds from the Center for Cancer Research at CCR and funds for JJ from the Mayo Cancer Center and Center for Individualized Medicine, Rochester, MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Jen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, R., Yang, SH., Meerzaman, D. et al. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene 30, 3784–3791 (2011). https://doi.org/10.1038/onc.2011.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.98

Keywords

This article is cited by

Search

Quick links