Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer

Abstract

Signal peptide-CUB-EGF-like domain-containing protein 3 (SCUBE3) is a secreted glycoprotein that is overexpressed in lung cancer tumor tissues and is correlated with the invasive ability in a lung cancer cell line model. These observations suggest that SCUBE3 may have a role in lung cancer progression. By exogenous SCUBE3 treatment or knockdown of SCUBE3 expression, we found that SCUBE3 could promote lung cancer cell mobility and invasiveness. Knockdown of SCUBE3 expression also suppressed tumorigenesis and cancer metastasis in vivo. The secreted SCUBE3 proteins were cleaved by gelatinases (matrix metalloprotease-2 (MMP-2) and MMP-9) in media to release two major fragments: the N-terminal epidermal growth factor-like repeats and the C-terminal complement proteins C1r/C1s, Uegf and Bmp1 (CUB) domain. Both the purified SCUBE3 protein and the C-terminal CUB domain fragment, bound to transforming growth factor-β (TGF-β) type II receptor through the C-terminal CUB domain, activated TGF-β signaling and triggered the epithelial-mesenchymal transition (EMT). This process includes the induction of Smad2/3 phosphorylation, the increase of Smad2/3 transcriptional activity and the upregulation of the expression of target genes involved in EMT and cancer progression (such as TGF-β1, MMP-2, MMP-9, plasminogen activator inhibitor type-1, vascular endothelial growth factor, Snail and Slug), thus promoting cancer cell mobility and invasion. In conclusion, in lung cancer cells, SCUBE3 could serve as an endogenous autocrine and paracrine ligand of TGF-β type II receptor, which could regulate TGF-β receptor signaling and modulate EMT and cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Binder BR, Mihaly J . (2008). The plasminogen activator inhibitor ‘paradox’ in cancer. Immunol Lett 118: 116–124.

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Beckmann G . (1993). The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 231: 539–545.

    Article  CAS  PubMed  Google Scholar 

  • Chu YW, Yang PC, Yang SC, Shyu YC, Hendrix MJ, Wu R et al. (1997). Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol 17: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Dean RA, Butler GS, Hamma-Kourbali Y, Delbe J, Brigstock DR, Courty J et al. (2007). Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis. Mol Cell Biol 27: 8454–8465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elloul S, Elstrand MB, Nesland JM, Trope CG, Kvalheim G, Goldberg I et al. (2005). Snail, Slug, and Smad-interacting protein 1 as novel parameters of disease aggressiveness in metastatic ovarian and breast carcinoma. Cancer 103: 1631–1643.

    Article  CAS  PubMed  Google Scholar 

  • Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M et al. (2007). Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers. Cancer Res 67: 2187–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD et al. (2000). The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 60: 636–643.

    CAS  PubMed  Google Scholar 

  • Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C . (2004). Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48: 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Gupta PB, Kuperwasser C, Brunet JP, Ramaswamy S, Kuo WL, Gray JW et al. (2005). The melanocyte differentiation program predisposes to metastasis after neoplastic transformation. Nat Genet 37: 1047–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawinkels LJ, Zuidwijk K, Verspaget HW, de Jonge-Muller ES, van Duijn W, Ferreira V et al. (2008). VEGF release by MMP-9 mediated heparan sulphate cleavage induces colorectal cancer angiogenesis. Eur J Cancer 44: 1904–1913.

    Article  CAS  PubMed  Google Scholar 

  • Haworth K, Smith F, Zoupa M, Seppala M, Sharpe PT, Cobourne MT . (2007). Expression of the Scube3 epidermal growth factor-related gene during early embryonic development in the mouse. Gene Expr Patterns 7: 630–634.

    Article  CAS  PubMed  Google Scholar 

  • Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A . (2007). Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci 48: 4360–4367.

    Article  PubMed  Google Scholar 

  • Hong TM, Chen YL, Wu YY, Yuan A, Chao YC, Chung YC et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clin Cancer Res 13: 4759–4768.

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H et al. (2004). NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114: 569–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber MA, Kraut N, Beug H . (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558.

    Article  CAS  PubMed  Google Scholar 

  • Hundsdorfer B, Zeilhofer HF, Bock KP, Dettmar P, Schmitt M, Horch HH . (2004). [The prognostic importance of urinase type plasminogen activators (uPA) and plasminogen activator inhibitors (PAI-1) in the primary resection of oral squamous cell carcinoma]. Mund Kiefer Gesichtschir 8: 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Iniesta P, Moran A, De Juan C, Gomez A, Hernando F, Garcia-Aranda C et al. (2007). Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep 17: 217–223.

    CAS  PubMed  Google Scholar 

  • Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A et al. (2004). Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431: 707–712.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn W, Schmalfeldt B, Reuning U, Pache L, Berger U, Ulm K et al. (1999). Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer 79: 1746–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lader AS, Ramoni MF, Zetter BR, Kohane IS, Kwiatkowski DJ . (2004). Identification of a transcriptional profile associated with in vitro invasion in non-small cell lung cancer cell lines. Cancer Biol Ther 3: 624–631.

    Article  CAS  PubMed  Google Scholar 

  • Leivonen SK, Kahari VM . (2007). Transforming growth factor-beta signaling in cancer invasion and metastasis. Int J Cancer 121: 2119–2124.

    Article  CAS  PubMed  Google Scholar 

  • Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I et al. (2007). Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204: 2935–2948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin TA, Goyal A, Watkins G, Jiang WG . (2005). Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12: 488–496.

    Article  PubMed  Google Scholar 

  • Massague J . (2008). TGF beta in Cancer. Cell 134: 215–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Providence KM, Higgins PJ . (2004). PAI-1 expression is required for epithelial cell migration in two distinct phases of in vitro wound repair. J Cell Physiol 200: 297–308.

    Article  CAS  PubMed  Google Scholar 

  • Rao Z, Handford P, Mayhew M, Knott V, Brownlee GG, Stuart D . (1995). The structure of a Ca(2+)-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Reichenberger F, Eickelberg O, Wyser C, Perruchoud AP, Roth M, Tamm M . (2001). Distinct endobronchial expression of matrix-metalloproteinases (MMP) and their endogenous inhibitors in lung cancer. Swiss Med Wkly 131: 273–279.

    CAS  PubMed  Google Scholar 

  • Roy HK, Smyrk TC, Koetsier J, Victor TA, Wali RK . (2005). The transcriptional repressor SNAIL is overexpressed in human colon cancer. Dig Dis Sci 50: 42–46.

    Article  CAS  PubMed  Google Scholar 

  • Shih JY, Tsai MF, Chang TH, Chang YL, Yuan A, Yu CJ et al. (2005). Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 11: 8070–8078.

    Article  CAS  PubMed  Google Scholar 

  • Shioiri M, Shida T, Koda K, Oda K, Seike K, Nishimura M et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Br J Cancer 94: 1816–1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steeg PS . (2006). Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 12: 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Stefansson S, McMahon GA, Petitclerc E, Lawrence DA . (2003). Plasminogen activator inhibitor-1 in tumor growth, angiogenesis and vascular remodeling. Curr Pharm Des 9: 1545–1564.

    Article  CAS  PubMed  Google Scholar 

  • Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18: 99–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A . (2005). TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16: 1987–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, Kao SH et al. (2009). p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nat Cell Biol 11: 694–704.

    Article  CAS  PubMed  Google Scholar 

  • Werle B, Kotzsch M, Lah TT, Kos J, Gabrijelcic-Geiger D, Spiess E et al. (2004). Cathepsin B, plasminogenactivator-inhibitor (PAI-1) and plasminogenactivator-receptor (uPAR) are prognostic factors for patients with non-small cell lung cancer. Anticancer Res 24: 4147–4161.

    CAS  PubMed  Google Scholar 

  • Wu BT, Su YH, Tsai MT, Wasserman SM, Topper JN, Yang RB . (2004). A novel secreted, cell-surface glycoprotein containing multiple epidermal growth factor-like repeats and one CUB domain is highly expressed in primary osteoblasts and bones. J Biol Chem 279: 37485–37490.

    Article  CAS  PubMed  Google Scholar 

  • Yang HY, Cheng CF, Djoko B, Lian WS, Tu CF, Tsai MT et al. (2007). Transgenic overexpression of the secreted, extracellular EGF-CUB domain-containing protein SCUBE3 induces cardiac hypertrophy in mice. Cardiovasc Res 75: 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ . (2005). Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem 280: 11740–11748.

    Article  CAS  PubMed  Google Scholar 

  • Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH et al. (2006). A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8: 1398–1406.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Stamenkovic I . (2000). Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176.

    PubMed  PubMed Central  Google Scholar 

  • Zhang YE . (2009). Non-Smad pathways in TGF-beta signaling. Cell Res 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ker-Chau Li (Institute of Statistical Science, Academia Sinica) for providing EKVX and Hop62 cells and Shih-Han Kao for English language editing. This work was supported by Academia Sinica (Grant AS-97-FP-L16) and the National Science Council, Taiwan (Grants NSC98-2628-B-002-086-MY3 and NSC97-2314-B-002-146-MY3). shRNA constructs were obtained from the National RNAi Core Facility at the Institute of Molecular Biology/Genomic Research Center, Academia Sinica, Taipei, Taiwan. T-M H and P-C Y co-directed the project and contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T-M Hong or P-C Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, YY., Peck, K., Chang, YL. et al. SCUBE3 is an endogenous TGF-β receptor ligand and regulates the epithelial-mesenchymal transition in lung cancer. Oncogene 30, 3682–3693 (2011). https://doi.org/10.1038/onc.2011.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.85

Keywords

This article is cited by

Search

Quick links