Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo

Abstract

Glioblastoma multiforme is one of the most devastating cancers and presents unique challenges to therapy because of its aggressive behavior. Cancer-initiating or progenitor cells have been described to be the only cell population with tumorigenic capacity in glioblastoma. Therefore, effective therapeutic strategies targeting these cells or the early precursors may be beneficial. We have established different cultures of glioblastoma-initiating cells (GICs) derived from surgical specimens and found that, after induction of differentiation, the NFκB transcriptional pathway was activated, as determined by analyzing key proteins such as p65 and IκB and the upregulation of a number of target genes. We also showed that blockade of nuclear factor (NF)κB signaling in differentiating GICs by different genetic strategies or treatment with small-molecule inhibitors, promoted replication arrest and senescence. This effect was partly mediated by reduced levels of the NFκB target gene cyclin D1, because its downregulation by RNA interference reproduced a similar phenotype. Furthermore, these results were confirmed in a xenograft model. Intravenous treatment of immunodeficient mice bearing human GIC-derived tumors with a novel small-molecule inhibitor of the NFκB pathway induced senescence of tumor cells but no ultrastructural alterations of the brain parenchyma were detected. These findings reveal that activation of NFκB may keep differentiating GICs from acquiring a mature postmitotic phenotype, thus allowing cell proliferation, and support the rationale for therapeutic strategies aimed to promote premature senescence of differentiating GICs by blocking key factors within the NFκB pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  • Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133: 1006–1018.

    Article  CAS  PubMed  Google Scholar 

  • Baird DM, Rowson J, Wynford-Thomas D, Kipling D . (2003). Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet 33: 203–207.

    Article  CAS  PubMed  Google Scholar 

  • Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ et al. (2007). CD133(+) and CD133(−) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010–4015.

    Article  CAS  PubMed  Google Scholar 

  • Berciano MT, Villagra NT, Ojeda JL, Navascues J, Gomes A, Lafarga M et al. (2004). Oculopharyngeal muscular dystrophy-like nuclear inclusions are present in normal magnocellular neurosecretory neurons of the hypothalamus. Hum Mol Genet 13: 829–838.

    Article  CAS  PubMed  Google Scholar 

  • Brown K, Gerstberger S, Carlson L, Franzoso G, Siebenlist U . (1995). Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485–1488.

    Article  CAS  PubMed  Google Scholar 

  • Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE et al. (2010). Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res 16: 2715–2728.

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Luo JL, Karin M . (2007). IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA 104: 15852–15857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59: 3761–3767.

    CAS  PubMed  Google Scholar 

  • Cheng L, Bao S, Rich JN . (2010). Potential therapeutic implications of cancer stem cells in glioblastoma. Biochem Pharmacol 80: 654–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyler CE, Rich JN . (2008). Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26: 2839–2845.

    Article  CAS  PubMed  Google Scholar 

  • Gandarillas A, Davies D, Blanchard JM . (2000). Normal and c-Myc-promoted human keratinocyte differentiation both occur via a novel cell cycle involving cellular growth and endoreplication. Oncogene 19: 3278–3289.

    Article  CAS  PubMed  Google Scholar 

  • Gire V, Roux P, Wynford-Thomas D, Brondello JM, Dulic V . (2004). DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 23: 2554–2563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Suarez E, Branstetter D, Armstrong A, Dinh H, Blumberg H, Dougall WC . (2007). RANK overexpression in transgenic mice with mouse mammary tumor virus promoter-controlled RANK increases proliferation and impairs alveolar differentiation in the mammary epithelia and disrupts lumen formation in cultured epithelial acini. Mol Cell Biol 27: 1442–1454.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S . (2000). Hepatic polyploidy and liver growth control. Semin Cancer Biol 10: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F et al. (2002). Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 277: 41701–41705.

    Article  CAS  PubMed  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HB, Kim YE, Kwon HJ, Sok DE, Lee Y . (2007). Enhancement of NF-kappaB expression and activity upon differentiation of human embryonic stem cell line SNUhES3. Stem Cells Dev 16: 615–623.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata H, Tachibana M, Fujimori T, Imai Y . (2006). Differentiation-inducing therapy for solid tumors. Curr Pharm Des 12: 379–385.

    Article  CAS  PubMed  Google Scholar 

  • Lam WA, Cao L, Umesh V, Keung AJ, Sen S, Kumar S . (2010). Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol Cancer 9: 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kannagi M, Ferrante RJ, Kowall NW, Ryu H . (2009). Activation of Ets-2 by oxidative stress induces Bcl-xL expression and accounts for glial survival in amyotrophic lateral sclerosis. FASEB J 23: 1739–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. (2006). Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9: 391–403.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Makarov SS . (2006). An essential role of NF-kappaB in the ‘tumor-like’ phenotype of arthritic synoviocytes. Proc Natl Acad Sci USA 103: 17432–17437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancuso MR, Davis R, Norberg SM, O'Brien S, Sennino B, Nakahara T et al. (2006). Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J Clin Invest 116: 2610–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercurio F, Zhu H, Murray BW, Shevchenko A, Bennett BL, Li J et al. (1997). IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science 278: 860–866.

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Mattson MP, Rao MS . (2004). Cellular lifespan and senescence signaling in embryonic stem cells. Aging Cell 3: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Molenaar JJ, Ebus ME, Koster J, van Sluis P, van Noesel CJ, Versteeg R et al. (2008). Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma. Cancer Res 68: 2599–2609.

    Article  CAS  PubMed  Google Scholar 

  • Naugler WE, Karin M . (2008). NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18: 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . (1999). NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Pena E, Berciano MT, Fernandez R, Ojeda JL, Lafarga M . (2001). Neuronal body size correlates with the number of nucleoli and Cajal bodies, and with the organization of the splicing machinery in rat trigeminal ganglion neurons. J Comp Neurol 430: 250–263.

    Article  CAS  PubMed  Google Scholar 

  • Pevsner-Fischer M, Morad V, Cohen-Sfady M, Rousso-Noori L, Zanin-Zhorov A, Cohen S et al. (2007). Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood 109: 1422–1432.

    Article  CAS  PubMed  Google Scholar 

  • Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T et al. (2004). A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imag 31: 740–751.

    Article  CAS  Google Scholar 

  • Sabolek M, Herborg A, Schwarz J, Storch A . (2006). Dexamethasone blocks astroglial differentiation from neural precursor cells. Neuroreport 17: 1719–1723.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez C, Salas AP, Brana AF, Palomino M, Pineda-Lucena A, Carbajo RJ et al. (2009). Generation of potent and selective kinase inhibitors by combinatorial biosynthesis of glycosylated indolocarbazoles. Chem Commun (Camb) 21: 4118–4120.

    Article  Google Scholar 

  • Shay JW, Roninson IB . (2004). Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23: 2919–2933.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828.

    CAS  PubMed  Google Scholar 

  • Torres J, Watt FM . (2008). Nanog maintains pluripotency of mouse embryonic stem cells by inhibiting NFkappaB and cooperating with Stat3. Nat Cell Biol 10: 194–201.

    Article  CAS  PubMed  Google Scholar 

  • Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al. (2004). Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304: 104–107.

    Article  CAS  PubMed  Google Scholar 

  • Vaira S, Alhawagri M, Anwisye I, Kitaura H, Faccio R, Novack DV . (2008). RelA/p65 promotes osteoclast differentiation by blocking a RANKL-induced apoptotic JNK pathway in mice. J Clin Invest 118: 2088–2097.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wehling N, Palmer GD, Pilapil C, Liu F, Wells JW, Muller PE et al. (2009). Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum 60: 801–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B . (2006). Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7: 1–18.

    Article  Google Scholar 

  • Young KM, Bartlett PF, Coulson EJ . (2006). Neural progenitor number is regulated by nuclear factor-kappaB p65 and p50 subunit-dependent proliferation rather than cell survival. J Neurosci Res 83: 39–49.

    Article  CAS  PubMed  Google Scholar 

  • Zhang MY, Sun SC, Bell L, Miller BA . (1998). NF-kappaB transcription factors are involved in normal erythropoiesis. Blood 91: 4136–4144.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Instituto de Salud Carlos III (Spanish Ministry of Science and Innovation) grants RD06/0020/0074 (JLF-L) and RD06/0020/0088 (JAM-C) (Red Temática de Investigación Cooperativa en Cáncer), PI070196, PI081878, and Accion Transversal del Cancer 2008, and grant API08/01 from Fundacion Marques de Valdecilla (JLF-L). We thank Francisco Moris (EntreChem, Spain) for providing the NFκB inhibitor 70124, and Ainara Sagardoy, Silvia Mora, Maria Collantes and Ivan Peñuelas (University of Navarra, Spain) for support with intracraneal injections and microPET studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Fernandez-Luna.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, L., Ruiz-Ontañon, P., Vazquez-Barquero, A. et al. Blockade of the NFκB pathway drives differentiating glioblastoma-initiating cells into senescence both in vitro and in vivo. Oncogene 30, 3537–3548 (2011). https://doi.org/10.1038/onc.2011.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.74

Keywords

This article is cited by

Search

Quick links