Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin

Abstract

Gonadotropin-releasing hormone (GnRH) is a potent prometastatic factor in ovarian cancer, but the intracellular signaling events are not well understood. The classical Gαq-phospholipase C signal transduction pathway known to operate in the pituitary is not involved in GnRH actions at non-pituitary targets. Here we showed that GnRH treatment of ovarian cancer cells led to a rapid and remarkable tyrosine phosphorylation of p120 catenin (p120ctn), which was mediated by P-cadherin. The use of P-cadherin small interfering RNA or neutralizing antibodies to inhibit P-cadherin expression and function resulted in diminished p120ctn activation, confirming that the effect was P-cadherin specific. On exploring how P-cadherin, which lacks intrinsic kinase activity, might regulate the activation of p120ctn, we found that P-cadherin could induce the ligand-independent activation of insulin-like growth factor-1 receptor (IGF-1R). Inhibition of IGF-1R expression or its activity significantly inhibited GnRH-induced p120ctn activation, and the subsequent cell migration and invasion. In addition, we showed that IGF-1R regulation by P-cadherin was associated with complex formation between IGF-1R and P-cadherin, and this regulation was also observed to be in vivo correlated with metastasis. Furthermore, using a mouse model of ovarian cancer metastasis, GnRH receptor knockdown was shown to diminish peritoneal dissemination of tumors and ascites formation. These findings suggest for the first time that GnRH can initiate an outside-in p120ctn signal transduction through the cross-talk between P-cadherin and IGF-1R, thus providing a novel molecular mechanism by which GnRH may control the high level of aggressiveness and invasion and metastasis potential that are characteristic of ovarian cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Alonso L, Gallego E, Gonzalez FJ, Sanchez-Munoz A, Torres E, Pajares BI et al. (2004). Gonadotropin and steroid receptors as prognostic factors in advanced ovarian cancer: a retrospective study. Clin Transl Oncol 11: 748–752.

    Article  Google Scholar 

  • Brokaw J, Katsaros D, Wiley A, Lu L, Su D, Sochirca O et al. (2007). IGF-I in epithelial ovarian cancer and its role in disease progression. Growth Factors 25: 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Chen GT, Tai CT, Yeh LS, Yang TC, Tsai HD . (2002). Identification of the cadherin subtypes present in the human peritoneum and endometriotic lesions: potential role for P-cadherin in the development of endometriosis. Mol Reprod Dev 62: 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Cheung LW, Wong AS . (2008). Gonadotropin-releasing hormone: GnRH receptor signaling in extrapituitary tissues. FEBS J 275: 5479–5495.

    Article  CAS  PubMed  Google Scholar 

  • Cheung LW, Leung PC, Wong AS . (2006). Gonadotropin-releasing hormone promotes ovarian cancer cell invasiveness through c-Jun NH2-terminal kinase-mediated activation of matrix metalloproteinase (MMP)-2 and MMP-9. Cancer Res 66: 10902–10910.

    Article  CAS  PubMed  Google Scholar 

  • Cheung LW, Leung PC, Wong AS . (2010). Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 29: 2427–2440.

    Article  CAS  PubMed  Google Scholar 

  • Choi JH, Park JT, Davidson B, Morin PJ, Shih Ie M, Wang TL . (2008). Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res 68: 5716–5723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cozzolino M, Stagni V, Spinardi L, Campioni N, Fiorentini C, Salvati E et al. (2003). p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell 14: 1964–1977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Criswell T, Beman M, Araki S, Leskov K, Cataldo E, Mayo LD et al. (2005). Delayed activation of insulin-like growth factor-1 receptor/Src/MAPK/Egr-1 signaling regulates clusterin expression, a pro-survival factor. J Biol Chem 280: 14212–14221.

    Article  CAS  PubMed  Google Scholar 

  • Du J, Sperling LS, Marrero MB, Phillips L, Delafontaine P . (1996). G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 218: 934–939.

    Article  CAS  PubMed  Google Scholar 

  • Dunn SE, Ehrlich M, Sharp NJ, Reiss K, Solomon G, Hawkins R et al. (1998). A dominant negative mutant of the insulin-like growth factor-1 receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 58: 3353–3361.

    CAS  PubMed  Google Scholar 

  • Ellerbroek SM, Halbleib JM, Benavidez M, Warmka JK, Wattenberg EV, Stack MS et al. (2001). Phosphatidylinositol 3-kinase activity in epidermal growth factor-stimulated matrix metalloproteinase-9 production and cell surface association. Cancer Res 61: 1855–1861.

    CAS  PubMed  Google Scholar 

  • Emons G, Pahwa GS, Brack C, Sturm R, Oberheuser F, Knuppen R . (1989). Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Eur J Cancer Clin Oncol 25: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Hall A . (2002). Rho GTPases in cell biology. Nature 420: 629–635.

    CAS  PubMed  Google Scholar 

  • Fagotto F, Gumbiner BM . (1996). Cell contact-dependent signaling. Dev Biol 180: 445–454.

    Article  CAS  PubMed  Google Scholar 

  • Grześ A, Szamatowicz M . (1978). Luteinizing hormone-releasing hormone in prepubertal and pubertal girls. Endokrinologie 71: 40–44.

    PubMed  Google Scholar 

  • Hodivala KJ, Watt FM . (1994). Evidence that cadherins play a role in the downregulation of integrin expression that occurs during keratinocyte terminal differentiation. J Cell Biol 124: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Holzman JL, Liu L, Duke BJ, Kemendy AE, Eaton DC . (2006). Transactivation of the IGF-1R by aldosterone. Am J Physiol Renal Physiol 292: F1219–F1228.

    Article  PubMed  Google Scholar 

  • Irmer G, Burger C, Muller R, Ortmann O, Peter U, Kakar SS et al. (1995). Expression of the messenger RNAs for luteinizing hormone-releasing hormone (LHRH) and its receptor in human ovarian epithelial carcinoma. Cancer Res 55: 817–822.

    CAS  PubMed  Google Scholar 

  • Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF et al. (2010). Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141: 117–128.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun J . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Kawamura Y, Miyake A, Aono T, Kurachi K . (1980). Plasma luteinizing hormone-releasing hormone levels in normal women and patients with amenorrhea. Fertil Steril 34: 444–447.

    Article  CAS  PubMed  Google Scholar 

  • Liao JK . (2003). Cross-coupling between the oestrogen receptor and phosphatide 3-kinase. Biochem Soc Trans 31: 66–70.

    Article  CAS  PubMed  Google Scholar 

  • Morali OG, Delmas V, Moore R, Jeanney C, Thiery JP, Larue L . (2001). IGF-II induces rapid beta-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 20: 4942–4950.

    Article  CAS  PubMed  Google Scholar 

  • Nobes CD, Hall A . (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. J Cell Biol 144: 1235–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel IS, Madan P, Getsios S, Bertrand MA, MacCalman CD . (2003). Cadherin switching in ovarian cancer progression. Int J Cancer 106: 172–177.

    Article  CAS  PubMed  Google Scholar 

  • Pennisi PA, Barr V, Nunez NP, Stannard B, Le Roith D . (2002). Reduced expression of insulin-like growth factor I receptors in MCF-7 breast cancer cells leads to a more metastatic phenotype. Cancer Res 62: 6529–6537.

    CAS  PubMed  Google Scholar 

  • Pece S, Gutkind JS . (2000). Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275: 41227–41233.

    Article  CAS  PubMed  Google Scholar 

  • Pon YL, Zhou HY, Cheung AN, Ngan HY, Wong AS . (2008). p70 S6 kinase promotes epithelial to mesenchymal transition through Snail induction in ovarian cancer cells. Cancer Res 68: 6524–6532.

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR . (2004). E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. Embo J 23: 1739–1748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AB, Roesel DJ, Kanner SB, Parsons JT . (1989). Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol Cell Biol 9: 629–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada K, Radjabi AR, Shinomiya N, Kistner E, Kenny H, Becker AR et al. (2007). c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res 67: 1670–1679.

    Article  CAS  PubMed  Google Scholar 

  • Shaw TJ, Senterman MK, Dawson K, Drane CA, Vanderhyden BC . (2004). Characterization of intraperitoneal, orthotopic, and metastatic xenograft models of human ovarian cancer. Mol Ther 10: 1032–1042.

    Article  CAS  PubMed  Google Scholar 

  • Soubry A, van Hengel J, Parthoens E, Colpaert C, Van Marck E, Waltregny D et al. (2005). Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res 65: 2224–2233.

    Article  CAS  PubMed  Google Scholar 

  • Spentzos D, Cannistra SA, Grall F, Levine DA, Pillay K, Libermann TA et al. (2007). IGF axis gene expression patterns are prognostic of survival in epithelial ovarian cancer. Endocr Relat Cancer 14: 781–790.

    Article  CAS  PubMed  Google Scholar 

  • Spring CM, Kelly KF, O'Kelly I, Graham M, Crawford HC, Daniel JM . (2005). The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the beta-catenin/TCF target gene matrilysin. Exp Cell Res 305: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Steele IA, Edmondson RJ, Bulmer JN, Bolger BS, Leung HY, Davies BR . (2001). Induction of FGF receptor 2-IIIb expression and response to its ligands in epithelial ovarian cancer. Oncogene 20: 5878–5887.

    Article  CAS  PubMed  Google Scholar 

  • Sundfeldt K . (2003). Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol Cell Endocrinol 202: 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Suyama K, Shapiro I, Guttman M, Hazan RB . (2002). A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2: 301–314.

    Article  CAS  PubMed  Google Scholar 

  • Takahari D, Yamada Y, Okita NT, Honda T, Hirashima Y, Matsubara J et al. (2009). Relationships of insulin-like growth factor-1 receptor and epidermal growth factor receptor expression to clinical outcomes in patients with colorectal cancer. Oncology 76: 42–48.

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson SJ, Kucukmetin A, Cross P, Darby S, Gnanapragasam VJ, Calvert AH et al. (2008). Expression of gonadotropin releasing hormone receptor I is a favorable prognostic factor in epithelial ovarian cancer. Mol Pathol 39: 1197–1204.

    CAS  Google Scholar 

  • Wong AS, Maines-Bandiera SL, Rosen B, Wheelock MJ, Johnson KR, Leung PC et al. (1999). Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int J Cancer 81: 180–188.

    Article  CAS  PubMed  Google Scholar 

  • Yim M, Guan X, Liao Z, Wei Q . (2009). Insulin-like growth factor-1 receptor-targeted therapy for non-small cell lung cancer: a mini review. Am J Transl Res 1: 101–114.

    Google Scholar 

Download references

Acknowledgements

We thank Dr N Auersperg for cell lines. This work was supported by Hong Kong Research Grant Council 778108 and HKU Outstanding Young Researcher Award (AST Wong).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S T Wong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, L., Mak, A., Cheung, A. et al. P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin. Oncogene 30, 2964–2974 (2011). https://doi.org/10.1038/onc.2011.7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.7

Keywords

This article is cited by

Search

Quick links