Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival

Abstract

Angiogenin, a 14-kDa multifunctional pro-angiogenic growth factor, is upregulated in several types of cancers. Anti-angiogenin monoclonal antibodies used as antagonists inhibited the establishment, progression and metastasis of human cancer cells in athymic mice (Olson et al., 1994). Silencing angiogenin and inhibition of angiogenin's nuclear translocation blocked cell survival and induced cell death in B-lymphoma and endothelial cells latently infected with Kaposi sarcoma-associated herpesvirus (Sadagopan et al., 2009), suggesting that actively proliferating cancer cells could be inducing angiogenin for inhibiting apoptotic pathways. However, the mechanism of cell survival and apoptosis regulation by angiogenin and their functional significance in cancer is not known. We demonstrate that angiogenin interacts with p53 and colocalizes in the nucleus. Silencing endogenous angiogenin induced p53 promoter activation and p53 target gene (p53, p21 and Bax) expression, downregulated anti-apoptotic Bcl-2 gene expression and increased p53-mediated cell death. In contrast, angiogenin expression blocked pro-apoptotic Bax and p21 expression, induced Bcl-2 and blocked cell death. Angiogenin also co-immunoprecipitated with p53 regulator protein Mdm2. Angiogenin expression resulted in the inhibition of p53 phosphorylation, increased p53–Mdm2 interaction, and consequently increased ubiquitination of p53. Taken together, these studies demonstrate that angiogenin promotes the inhibition of p53 function to mediate anti-apoptosis and cell survival. Our results reveal for the first time a novel p53 interacting function of angiogenin in anti-apoptosis and survival of cancer cells and suggest that targeting angiogenin could be an effective therapy for several cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adams JM, Cory S . (2007). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19: 488–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonsson B, Montessuit S, Sanchez B, Martinou JC . (2001). Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276: 11615–11623.

    Article  CAS  PubMed  Google Scholar 

  • Ashkenazi A, Dixit VM . (1998). Death receptors: signaling and modulation. Science 281: 1305–1308.

    Article  CAS  PubMed  Google Scholar 

  • Barton DP, Cai A, Wendt K, Young M, Gamero A, De Cesare S et al. (1997). Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res 3: 1579–1586.

    CAS  PubMed  Google Scholar 

  • Chopra V, Dinh TV, Hannigan EV . (1997). Serum levels of interleukins, growth factors and angiogenin in patients with endometrial cancer. J Cancer Res Clin Oncol 123: 167–172.

    CAS  PubMed  Google Scholar 

  • Chopra V, Dinh TV, Hannigan EV . (1998). Circulating serum levels of cytokines and angiogenic factors in patients with cervical cancer. Cancer Invest 16: 152–159.

    Article  CAS  PubMed  Google Scholar 

  • Fett JW, Strydom DJ, Lobb RR, Alderman EM, Bethune JL, Riordan JF et al. (1985). Isolation and characterization of angiogenin, an angiogenic protein from human carcinoma cells. Biochemistry 24: 5480–5486.

    Article  CAS  PubMed  Google Scholar 

  • Foulkes WD . (2007). p53--master and commander. N Engl J Med 357: 2539–2541.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M . (2002). Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21: 1299–1303.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Hemann MT, Lowe SW . (2006). The p53–Bcl-2 connection. Cell Death Differ 13: 1256–1259.

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Gartenhaus RB, Eichberg D, Liu Z, Fang HB, Rapoport AP et al. (2010). PBK/TOPK interacts with the DBD domain of tumor suppressor p53 and modulates expression of transcriptional targets including p21. Oncogene 29: 5464–5474.

    Article  CAS  PubMed  Google Scholar 

  • Hu GF . (1998). Neomycin inhibits angiogenin-induced angiogenesis. Proc Natl Acad Sci USA 95: 9791–9795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto K, Liu S, Tsuji T, Olson KA, Hu GF . (2005). Endogenous angiogenin in endothelial cells is a general requirement for cell proliferation and angiogenesis. Oncogene 24: 445–456.

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Zamzami N, Susin SA . (1997). Mitochondrial control of apoptosis. Immunol Today 18: 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Bell J, Brown A, Berry CL . (1994). The observation of angiogenin and basic fibroblast growth factor gene expression in human colonic adenocarcinomas, gastric adenocarcinomas, and hepatocellular carcinomas. J Pathol 172: 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Li DW, Liu JP, Schmid PC, Schlosser R, Feng H, Liu WB et al. (2006). Protein serine/threonine phosphatase-1 dephosphorylates p53 at Ser-15 and Ser-37 to modulate its transcriptional and apoptotic activities. Oncogene 25: 3006–3022.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yu D, Xu ZP, Riordan JF, Hu GF . (2001). Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 287: 305–310.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X . (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Marchenko ND, Wolff S, Erster S, Becker K, Moll UM . (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26: 923–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meek DW . (1994). Post-translational modification of p53. Semin Cancer Biol 5: 203–210.

    CAS  PubMed  Google Scholar 

  • Milczarek GJ, Martinez J, Bowden GT . (1997). p53 Phosphorylation: biochemical and functional consequences. Life Sci 60: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Montero S, Guzman C, Cortes-Funes H, Colomer R . (1998). Angiogenin expression and prognosis in primary breast carcinoma. Clin Cancer Res 4: 2161–2168.

    CAS  PubMed  Google Scholar 

  • Moroianu J, Riordan JF . (1994). Nuclear translocation of angiogenin in proliferating endothelial cells is essential to its angiogenic activity. Proc Natl Acad Sci USA 91: 1677–1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson KA, French TC, Vallee BL, Fett JW . (1994). A monoclonal antibody to human angiogenin suppresses tumor growth in athymic mice. Cancer Res 54: 4576–4579.

    CAS  PubMed  Google Scholar 

  • Oltvai ZN, Milliman CL, Korsmeyer SJ . (1993). Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619.

    Article  CAS  PubMed  Google Scholar 

  • Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T et al. (2005). Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 201: 279–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley T, Sontag E, Chen P, Levine A . (2008). Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9: 402–412.

    Article  CAS  PubMed  Google Scholar 

  • Sadagopan S, Sharma-Walia N, Veettil MV, Bottero V, Levine R, Vart RJ et al. (2009). Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J Virol 83: 3342–3364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadagopan S, Valiya Veettil M, Paudel N, Bottero V, Chandran B . (2011). Kaposi's sarcoma-associated herpesvirus-induced angiogenin plays roles in latency via the phospholipase C gamma pathway: blocking angiogenin inhibits latent gene expression and induces the lytic cycle. J Virol 85: 2666–2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh SY, Ahn J, Tamai K, Taya Y, Prives C . (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14: 289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Shimoyama S, Gansauge F, Gansauge S, Negri G, Oohara T, Beger HG et al. (1996). Increased angiogenin expression in pancreatic cancer is related to cancer aggressiveness. Cancer Res 56: 2703–2706.

    CAS  PubMed  Google Scholar 

  • Tsuji T, Sun Y, Kishimoto K, Olson KA, Liu S, Hirukawa S et al. (2005). Angiogenin is translocated to the nucleus of HeLa cells and is involved in ribosomal RNA transcription and cell proliferation. Cancer Res 65: 1352–1360.

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Waldman T, Kinzler KW, Vogelstein B . (1995). p21 is necessary for the p53-mediated G1 arrest in human cancer cells. Cancer Res 55: 5187–5190.

    CAS  PubMed  Google Scholar 

  • Xu ZP, Tsuji T, Riordan JF, Hu GF . (2003). Identification and characterization of an angiogenin-binding DNA sequence that stimulates luciferase reporter gene expression. Biochemistry 42: 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG et al. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297: 259–263.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Public Health Service grants, AI 091767 and the RFUMS—HM Bligh Cancer Research Fund to BC. We thank Dr AP Rapoport (University of Maryland) for providing p53 constructs. We thank Dr B Vogelstein (Johns Hopkins University) for the p53+/+ and p53−/− HCT116 cell lines. We thank Keith Philibert for critically reading the manuscript and Bob Dickinson for FACS analysis at the RFUMS core facility.

Author contributions: SS, MVV and BC designed the experiments. SS, MVV, SC, NP, VB and NSW performed the experiments. MVV, SS and BC wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Chandran.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadagopan, S., Veettil, M., Chakraborty, S. et al. Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 31, 4835–4847 (2012). https://doi.org/10.1038/onc.2011.648

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.648

Keywords

This article is cited by

Search

Quick links