Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum–DNA adduct repair

Abstract

The transcription of ERCC1 and other nucleotide excision repair (NER) genes is strongly influenced by c-jun. C-jun is transcriptionally regulated by Gli proteins of the Hedgehog pathway. We therefore studied the possible relationships between Gli1, c-jun, and the upregulation of ERCC1, XPD and XRCC1 in cisplatin-resistant human ovarian cancer cells. We studied the paired human ovarian cancer cell lines A2780 and A2780-CP70. We used a shRNA construct that specifically degrades Gli1 message. Genes we assessed for mRNA and/or protein levels included: c-jun, ERCC1, XPD, XRCC1, Gli1, Gli2, SHH, IHH, GAPDH and α-tubulin. Platinum–DNA adduct repair was assessed by atomic absorbance spectrometry with Zeeman background correction. Use of the anti-Gli1 shRNA in cisplatin-resistant cells resulted in a block of the cell's ability to upregulate genes in response to cisplatin treatment, including: c-jun, ERCC1, XPD and XRCC1. This block in upregulation of c-jun was concurrent with a change in the phosphorylation pattern of the c-jun protein, shifting that pattern from a Ser63/73 dominant pattern, to a Thr91/93 dominant pattern. A2780-CP70 cells were treated at their cisplatin IC50, and DNA repair was assessed after pretreatment with anti-Gli1 shRNA or scrambled shRNA control. Control cells repaired 78% of platinum–DNA adducts at 12 h, compared with 33% repair in cells pretreated with anti-Gli1 shRNA resulting in a 2.4-fold difference. Pretreatment of A2780-CP70 cells with anti-Gli1 shRNA resulted in supra-additive cell killing with cisplatin; shifting the cisplatin IC50 (half maximal inhibitory concentration) from 30 μM to 5 μM. Pretreatment of these cells with cyclopamine did not shift the cisplatin IC50. We conclude that the transcriptional protein Gli1 is important in the upregulation of these three DNA repair genes in human ovarian cancer cells, and that Gli1 strongly influences platinum–DNA adduct repair, and cellular sensitivity to cisplatin. This Gli1 role has c-jun as an intermediate in the pathway. In all, inhibition of Gli1 by a specific shRNA inhibits the upregulation of c-jun Ser63/73, and also inhibits the upregulation of three genes essential to NER (ERCC1, XPD) and base excision repair (XRCC1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Reed E . Cisplatin, Carboplatin, and Oxaliplatin. In: Chabner BA, Longo DL (eds). Cancer Chemotherapy and Biotherapy: Principles and Practice 4th Edn. Lippincott, Williams & Wilkins: Philadelphia, 2006, pp 332–343.

    Google Scholar 

  2. Reed E . Cisplatin and platinum analogs. In: DeVita VT, Rosenberg SA, Lawrence TS (eds). Cancer Principles and Practice of Oncology 8th Edn. Lippincott, Williams, and Wilkins: Philadelphia, 2008, pp 419–426.

    Google Scholar 

  3. Reed E . ERCC1 and clinical resistance to platinum-based therapy. Clin Cancer Res 2005; 11: 6100–6102.

    Article  CAS  PubMed  Google Scholar 

  4. Reed E . ERCCI measurements in clinical oncology. N Engl Med 2006; 355: 1054–1055.

    Article  CAS  Google Scholar 

  5. Reed E . DNA damage and repair in clinical oncology: an overview. Clin Cancer Res 2010; 16: 4511–4516.

    Article  CAS  PubMed  Google Scholar 

  6. Reed E . Nucleotide excision repair and anti-cancer chemotherapy. Cytotechnology 1998; 27: 187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reed E . Platinum-DNA adduct, nucleotide excision repair, and platinum based anti-cancer chemotherapy. Cancer Treat Rev 1998; 24: 331–344.

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Gardner K, Zhang L, Tsang B, Bostick-Bruton F, Reed E . Cisplatin induction of ERCC1 mRNA expression in A2780/CP70 human ovarian cancer cells. J Biol Chem 1998; 273: 23419–23425.

    Article  CAS  PubMed  Google Scholar 

  9. Li Q, Bostick-Bruton F, Reed E . Modulation of ERCC-1 mRNA expression by pharmacological agents in human ovarian cancer cells. Biochem Pharmacol 1999; 57: 347–353.

    Article  CAS  PubMed  Google Scholar 

  10. Mimnaugh EG, Yunmbam MK, Li Q, Bonvini P, Hwang SG, Trepel J et al. Proteasome inhibitors prevent cisplatin-DNA adduct repair and potentiate cisplatin-induced apoptosis in ovarian carcinoma cells. Biochem Pharmacol 2000; 60: 1343–1354.

    Article  CAS  PubMed  Google Scholar 

  11. Li Q, Tsang B, Gardner K, Bostick-Bruton F, Reed E . Phorbol ester exposure activates an AP-1 associated increase in ERCC1 mRNA expression in human ovarian cancer cells. Cell Mol Life Sci 1999; 55: 456–466.

    Article  CAS  PubMed  Google Scholar 

  12. Laner-Plamberger S, Kaser A, Paulischta M, Hauser-Kronberger C, Eichberger T, Frischauf AM . Cooperation between Gli and Jun enhances transcription of Jun and selected Gli target genes. Oncogene 2009; 28: 1639–1651.

    Article  CAS  PubMed  Google Scholar 

  13. Theunissen JW, de Sauvage FJ . Paracrine Hedgehog signaling in cancer. Cancer Res 2009; 69: 6007–6010.

    Article  CAS  PubMed  Google Scholar 

  14. Liao X, Siu MKY, Au Christy WH, Wong ESY, Chan HY, Ip PPC et al. Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 2009; 30: 131–140.

    Article  CAS  PubMed  Google Scholar 

  15. Bhattacharya R, Kwon J, Ali B, Wang E, Patra S, Shridhar V et al. Role of hedgehog signaling in ovarian cancer. Clin Cancer Res 2008; 14: 7659–7666.

    Article  CAS  PubMed  Google Scholar 

  16. Raivich G . c-Jun expression, activation and function in neural cell death, inflammation and repair. J Neurochem 2008; 107: 898–906.

    CAS  PubMed  Google Scholar 

  17. Bonovich M, Olive M, Reed E, O’Connell B, Vinson C . Adenoviral delivery of A-FOS, an AP-1 dominant negative, selectively inhibits drug resistance in two human cancer cell lines. Cancer Gene Ther 2002; 9: 62–70.

    Article  CAS  PubMed  Google Scholar 

  18. Parker RJ, Eastman A, Bostick-Bruton F, Reed E . Acquired cisplatin resistance in human ovarian cancer cells is associated with enhanced repair of cisplatin-DNA lesions and reduced drug accumulation. J Clin Invest 1991; 87: 772–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhen W, Link Jr CJ, O’Connor PM, Reed E, Parker RJ, Howell SB et al. Increased gene-specific repair of cisplatin interstand crosslinks in cisplatin resistant human ovarian cancer cells. Mol Cell Biol 1992; 87: 3689–3698.

    Article  Google Scholar 

  20. Desouza LA, Sathanoori M, Kapoor R, Rajadhyaksha N, Gonzalez LE, Kottmann AH et al. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult mammalian brain. Endocrinology 2011; 152: 1989–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugahara F, Aota S, Kuraku S, Murakami Y, Takio-Ogawa Y, Hirano S et al. Involvement of Hedgehog and FGF signaling in the lamprey telencephalon: evolution of regionalization and dorsoventral patterning of the vertebrate forebrain. Development 2011; 138: 1217–1226.

    Article  CAS  PubMed  Google Scholar 

  22. Chang HH, Chen BY, Wu CY, Tsao ZJ, Chen YY, Chang CP et al. Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 2011; 18: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song Z, Yue W, Wei B, Wang N, Li T, Guan L et al. Sonic hedgehog pathway is essential for maintenance of cancer stem-like cells in human gastric cancer. PLoS One. 2011; 6: e17687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361: 1173–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Von Hoff DD, Korn R, Mousses S . Pancreatic cancer—could it be that simple? A different context of vulnerability. Cancer Cell 2009; 16: 7–8.

    Article  CAS  PubMed  Google Scholar 

  26. Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med 2009; 361: 1164–1172.

    Article  CAS  PubMed  Google Scholar 

  27. Dabholkar M, Bostick-Bruton F, Weber C, Bohr VA, Egwuagu C, Reed E . ERCC1 and ERCC2 expression in malignant tissues from ovarian cancer patients. J Natl Canc Inst 1992; 84: 1512–1517.

    Article  CAS  Google Scholar 

  28. Dabholkar M, Vionnet JA, Bostick-Bruton F, Yu JJ, Reed E . mRNA Levels of XPAC and ERCC1 in ovarian tumor tissue correlates with response to platinum containing chemotherapy. J Clin Invest 1994; 94: 703–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krivak TC, Darcy KM, Tian C, Bookman M, Gallion H, Ambrosone CB et al. Single nucleotide polypmorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage ovarian and primary peritoneal carcinoma; A Gynecologic Oncology Group Study. Gynecol Oncol 2011; 22: 121–126.

    Article  Google Scholar 

  30. Cobo M, Isla D, Massuti B, Montes A, Sanchez JM, Provencio M et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in Non-small-cell lung cancer. J Clin Oncol 2007; 25: 2747–2754.

    Article  CAS  PubMed  Google Scholar 

  31. Lord RV, Brabender J, Gandara D, Alberola V, Camps C, Domine M et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002; 8: 2286–2291.

    CAS  PubMed  Google Scholar 

  32. Bellmunt J, Paz-Ares L, Cuello M, Cecere FL, Abiol S, Guillem V et al. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 2007; 18: 522–528.

    Article  CAS  PubMed  Google Scholar 

  33. Metzger R, Leichman CG, Danenberg KD, Daneberg PV, Lenz HJ, Hayashi K et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998; 16: 309–316.

    Article  CAS  PubMed  Google Scholar 

  34. Wei J, Zou Z, Qian X, Ding Y, Xie L, Sanchez JJ et al. ERCC1 mRNA levels and survival of advanced gastric patients treated with a modified FOLFOX regimen. Br J Cancer 2008; 98: 1398–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shirota Y, Stoehlmacher J, Brabender J, Xiong YP, Uetake H, Danenberg KD et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001; 19: 4298–4304.

    Article  CAS  PubMed  Google Scholar 

  36. Altaha R, Liang X, Yu JJ, Reed E . ERCC-1 gene expression and platinum resistance. Int J Mol Med 2004; 14: 959–970.

    CAS  PubMed  Google Scholar 

  37. Kim MK, Cho KJ, Kwon GY, Park SI, Kim YH, Kim JH et al. Patients with ERCC1- negative locally advanced esophageal cancers may benefit from preoperative chemoradiotherapy. Clin Cancer Res 2008; 14: 4225–4231.

    Article  CAS  PubMed  Google Scholar 

  38. Verhoeven EEA, van Kesteren M, Moolenaar GF, Visse R, Goosen N . Catalytic sites for 3′ and 5′ incision of Escherichia coli nucleotide excision repair are both located in UvrC. J Biol Chem 2000; 275: 5120–5123.

    Article  CAS  PubMed  Google Scholar 

  39. Westerveld A, Hoeijmakers JH, van Duin M, de Wit J, Odijk H, Pastink A et al. Molecular cloning of a human DNA repair gene. Nature 1984; 310: 425–429.

    Article  CAS  PubMed  Google Scholar 

  40. Xu H, Swoboda I, Bhalla PL, Sijbers AM, Zhao C, Ong EK et al. Plant homologue of human excision repair gene ERCC1 points to conversation of DNA repair mechanisms. Plant J 1998; 13: 823–829.

    Article  CAS  PubMed  Google Scholar 

  41. Dabholkar M, Bostick-Bruton F, Weber C, Egwuagu C, Bohr VA, Reed E . Expression of excision repair genes in non-malignant bone marrow from cancer patients. Mutat Res 1993; 293: 151–160.

    Article  CAS  PubMed  Google Scholar 

  42. Dabholkar MD, Berger MS, Vionnet JA, Egwuagu C, Silber JR, Yu JJ et al. Malignant and non-malignant brain tissues differ in their mRNA expression patterns for ERCC1 and ERCC2. Cancer Res 1995; 55: 1261–1266.

    CAS  PubMed  Google Scholar 

  43. Dabholkar MD, Berger MS, Vionnet JA, Overton L, Bostick-Bruton F, Yu JJ et al. Comparative analyses of relative ERCC3 and ERCC6 mRNA levels in gliomas and adjacent non-neoplastic brain. Mol Carcinog 1996; 17: 1–7.

    Article  CAS  PubMed  Google Scholar 

  44. Dabholkar M, Thornton K, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E . Increased mRNA levels of XPB and CSB without increased mRNA levels of MDR1 or MT-II in platinum-resistant human ovarian cancer tissues. Biochem Pharmacol 2000; 60: 1611–1619.

    Article  CAS  PubMed  Google Scholar 

  45. Reed E, Yu JJ, Davies A, Gannon J, Armentrout SL . Clear cell tumors have higher mRNA levels of ERCC1 and XPB than other histological types of epithelial ovarian cancer. Clin Cancer Res 2003; 9: 5299–5305.

    CAS  PubMed  Google Scholar 

  46. Zhong Z, Thornton K, Reed E . Computer based analyses of the 5′-flanking regions of selected genes involved in the nucleotide excision repair excision complex. Int J Oncol 2000; 17: 375–380.

    CAS  PubMed  Google Scholar 

  47. Das S, Harris LG, Metge BJ, Liu S, Riker AI, Samant RS et al. The Hedgehog pathway transcription factor, Gli1 promotes malignant behavior of cancer cells by upregulating osteopontin. J Biol Chem 2009; 284: 22888–22897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Reed E, Sauerhoff S, Poirier MC . Quantitation of platinum-DNA binding in human tissues following therapeutic levels of drug exposure—A novel use of graphite furnace spectrometry. Atomic Spectroscopy 1988; 9: 93–95.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from two endowments at the Mitchell Cancer Institute, University of South Alabama, Mobile: the Abraham Mitchell endowment, and the Point Clear Charities endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Reed.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudo, K., Gavin, E., Das, S. et al. Inhibition of Gli1 results in altered c-Jun activation, inhibition of cisplatin-induced upregulation of ERCC1, XPD and XRCC1, and inhibition of platinum–DNA adduct repair. Oncogene 31, 4718–4724 (2012). https://doi.org/10.1038/onc.2011.610

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.610

Keywords

This article is cited by

Search

Quick links