Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes

Abstract

The cyclin-cdk (cyclin-dependent kinase) inhibitor p27Kip1 (p27) has a crucial negative role on cell cycle progression. In addition to its classical role as a cyclin-cdk inhibitor, it also performs cyclin-cdk-independent functions as the regulation of cytoskeleton rearrangements and cell motility. p27 deficiency has been associated with tumor aggressiveness and poor clinical outcome, although the mechanisms underlying this participation still remain elusive. We report here a new cellular function of p27 as a transcriptional regulator in association with p130/E2F4 complexes that could be relevant for tumorigenesis. We observed that p27 associates with specific promoters of genes involved in important cellular functions as processing and splicing of RNA, mitochondrial organization and respiration, translation and cell cycle. On these promoters p27 co-localizes with p130, E2F4 and co-repressors as histone deacetylases (HDACs) and mSIN3A. p27 co-immunoprecipitates with these proteins and by affinity chromatography, we demonstrated a direct interaction of p27 with p130 and E2F4 through its carboxyl-half. We have also shown that p130 recruits p27 on the promoters, and there p27 is needed for the subsequent recruitment of HDACs and mSIN3A. Expression microarrays and luciferase assays revealed that p27 behaves as transcriptional repressor of these p27-target genes (p27-TGs). Finally, in human tumors, we established a correlation with overexpression of p27-TGs and poor survival. Thus, this new function of p27 as a transcriptional repressor could have a role in the major aggressiveness of tumors with low levels of p27.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  • Acosta JC, Ferrandiz N, Bretones G, Torrano V, Blanco R, Richard C et al. (2008). Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 28: 7286–7295.

    Article  CAS  Google Scholar 

  • Aguilera C, Hoya-Arias R, Haegeman G, Espinosa L, Bigas A . (2004). Recruitment of IkappaBalpha to the hes1 promoter is associated with transcriptional repression. Proc Natl Acad Sci USA 101: 16537–16542.

    Article  CAS  Google Scholar 

  • Baldassarre G, Belletti B, Nicoloso MS, Schiappacassi M, Vecchione A, Spessotto P et al. (2005). p27(Kip1)-stathmin interaction influences sarcoma cell migration and invasion. Cancer Cell 7: 51–63.

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodol) 57: 289–300.

    Google Scholar 

  • Besson A, Dowdy SF, Roberts JM . (2008). CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14: 159–169.

    Article  CAS  Google Scholar 

  • Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM . (2004). p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18: 862–876.

    Article  CAS  Google Scholar 

  • Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D et al. (2007). Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21: 1731–1746.

    Article  CAS  Google Scholar 

  • Blain SW . (2008). Switching cyclin D-Cdk4 kinase activity on and off. Cell Cycle 7: 892–898.

    Article  CAS  Google Scholar 

  • Blanco E, Messeguer X, Smith TF, Guigo R . (2006). Transcription factor map alignment of promoter regions. PLoS Comput Biol 2: e49.

    Article  Google Scholar 

  • Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJ et al. (2008). Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205: 2251–2268.

    Article  CAS  Google Scholar 

  • Carter BZ, Mak DH, Shi Y, Schober WD, Wang RY, Konopleva M et al. (2006). Regulation and targeting of Eg5, a mitotic motor protein in blast crisis CML: overcoming imatinib resistance. Cell Cycle 5: 2223–2229.

    Article  CAS  Google Scholar 

  • Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114: 47–62.

    Article  CAS  Google Scholar 

  • Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S et al. (2007). p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128: 281–294.

    Article  CAS  Google Scholar 

  • Chu IM, Hengst L, Slingerland JM . (2008). The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8: 253–267.

    Article  CAS  Google Scholar 

  • Cobrinik D, Lee MH, Hannon G, Mulligan G, Bronson RT, Dyson N et al. (1996). Shared role of the pRB-related p130 and p107 proteins in limb development. Genes Dev 10: 1633–1644.

    Article  CAS  Google Scholar 

  • Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E et al. (1996). A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85: 733–744.

    Article  CAS  Google Scholar 

  • Flicek P, Aken BL, Beal K, Ballester B, Caccamo M, Chen Y et al. (2008). Ensembl 2008. Nucleic Acids Res 36: D707–D714.

    Article  CAS  Google Scholar 

  • Frescas D, Pagano M . (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8: 438–449.

    Article  CAS  Google Scholar 

  • Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB et al. (2007). Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128: 269–280.

    Article  CAS  Google Scholar 

  • Gundem G, Perez-Llamas C, Jene-Sanz A, Kedzierska A, Islam A, Deu-Pons J et al. (2010). IntOGen: integration and data mining of multidimensional oncogenomic data. Nat Methods 7: 92–93.

    Article  CAS  Google Scholar 

  • Gutiérrez NC, Ocio EM, de Las Rivas J, Maiso P, Delgado M, Fermiñán E et al. (2007). Gene expression profiling of B lymphocytes and plasma cells from Waldenström's macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia 21: 541–549.

    Article  Google Scholar 

  • Hollenhorst PC, Shah AA, Hopkins C, Graves BJ . (2007). Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 21: 1882–1894.

    Article  CAS  Google Scholar 

  • Huszar D, Theoclitou ME, Skolnik J, Herbst R . (2009). Kinesin motor proteins as targets for cancer therapy. Cancer Metastasis Rev 28: 197–208.

    Article  CAS  Google Scholar 

  • James MK, Ray A, Leznova D, Blain SW . (2008). Differential modification of p27Kip1 controls its cyclin D-cdk4 inhibitory activity. Mol Cell Biol 28: 498–510.

    Article  CAS  Google Scholar 

  • Jones MH, Virtanen C, Honjoh D, Miyoshi T, Satoh Y, Okumura S et al. (2004). Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large-cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 363: 775–781.

    Article  CAS  Google Scholar 

  • Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M et al. (1996). Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(Kip1). Cell 85: 721–732.

    Article  CAS  Google Scholar 

  • Lapenna S, Giordano A . (2009). Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 8: 547–566.

    Article  CAS  Google Scholar 

  • Lopez-Bigas N, Kisiel TA, Dewaal DC, Holmes KB, Volkert TL, Gupta S et al. (2008). Genome-wide analysis of the H3K4 histone demethylase RBP2 reveals a transcriptional program controlling differentiation. Mol Cell 31: 520–530.

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ . (1951). Protein measurement with the folin-phenol reagent. J Biol Chem 193: 165–175.

    Google Scholar 

  • Macaluso M, Montanari M, Giordano A . (2006). Rb family proteins as modulators of gene expression and new aspects regarding the interaction with chromatin remodeling enzymes. Oncogene 25: 5263–5267.

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M . (2005). Mammalian cyclin-dependent kinases. Trends Biochem Sci 30: 630–641.

    Article  CAS  Google Scholar 

  • Malumbres M, Barbacid M . (2007). Cell cycle kinases in cancer. Curr Opin Genet Dev 17: 60–65.

    Article  CAS  Google Scholar 

  • Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R et al. (2003). TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31: 374–378.

    Article  CAS  Google Scholar 

  • McAllister SS, Becker-Hapak M, Pintucci G, Pagano M, Dowdy SF . (2003). Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol Cell Biol 23: 216–228.

    Article  CAS  Google Scholar 

  • Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J . (2005). p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 280: 18120–18129.

    Article  CAS  Google Scholar 

  • Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N et al. (1996). Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707–720.

    Article  CAS  Google Scholar 

  • Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C et al. (2006). p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20: 1511–1524.

    Article  CAS  Google Scholar 

  • Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S, Hall P et al. (2005). Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7: R953–R964.

    Article  CAS  Google Scholar 

  • Perez-Llamas C, Lopez-Bigas N . (2011). Gitools: analysis and visualisation of genomic data using interactive heat-maps. PLoS One 6: e19541.

    Article  CAS  Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9: 157–173.

    Article  CAS  Google Scholar 

  • Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S et al. (2007). Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 117: 823–834.

    Article  CAS  Google Scholar 

  • Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ et al. (2007). Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67: 4605–4619.

    Article  CAS  Google Scholar 

  • Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ et al. (2002). E2F mediates cell cycle-dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933–947.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  Google Scholar 

  • Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A et al. (2006). X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9: 121–132.

    Article  CAS  Google Scholar 

  • Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP . (1996). Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382: 325–331.

    Article  CAS  Google Scholar 

  • Sabates-Bellver J, Van der Flier LG, de Palo M, Cattaneo E, Maake C, Rehrauer H et al. (2007). Transcriptome profile of human colorectal adenomas. Mol Cancer Res 5: 1263–1275.

    Article  CAS  Google Scholar 

  • Saijo T, Ishii G, Ochiai A, Yoh K, Goto K, Nagai K et al. (2006). Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer 54: 217–225.

    Article  Google Scholar 

  • Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL et al. (2008). Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822–827.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  Google Scholar 

  • Shirane M, Harumiya Y, Ishida N, Hirai A, Miyamoto C, Hatakeyama S et al. (1999). Down-regulation of p27(Kip1) by two mechanisms, ubiquitin-mediated degradation and proteolytic processing. J Biol Chem 274: 13886–13893.

    Article  CAS  Google Scholar 

  • Sicinski P, Zacharek S, Kim C . (2007). Duality of p27Kip1 function in tumorigenesis. Genes Dev 21: 1703–1706.

    Article  CAS  Google Scholar 

  • Slingerland J, Pagano M . (2000). Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183: 10–17.

    Article  CAS  Google Scholar 

  • Smyth GK . (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: article 3.

    Article  Google Scholar 

  • Soeiro I, Mohamedali A, Romanska HM, Lea NC, Child ES, Glassford J et al. (2006). p27Kip1 and p130 cooperate to regulate hematopoietic cell proliferation in vivo. Mol Cell Biol 26: 6170–6184.

    Article  CAS  Google Scholar 

  • Vera J, Estanyol JM, Canela N, Llorens F, Agell N, Itarte E et al. (2007). Proteomic analysis of SET-binding proteins. Proteomics 7: 578–587.

    Article  CAS  Google Scholar 

  • Viglietto G, Motti ML, Bruni P, Melillo RM, D'Alessio A, Califano D et al. (2002). Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8: 1136–1144.

    Article  CAS  Google Scholar 

  • Yeh N, Miller JP, Gaur T, Capellini TD, Nikolich-Zugich J, de la HC et al. (2007). Cooperation between p27 and p107 during endochondral ossification suggests a genetic pathway controlled by p27 and p130. Mol Cell Biol 27: 5161–5171.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Anxo Vidal for p27Δ51- MEF cells; Dr Antonio Giordano for p130 pGEX plasmids; Dr Xavier Mayol for GST-E2F4 vector; and Dr Alan Cassady for the pGL2b plasmid. This work was supported by the Ministerio de Ciencia y Tecnología of Spain (grants SAF2006-05212 and SAF2009-07769 to OB and SAF2009-06954 to NL-B; the Fondo de Investigación Sanitaria (grant PI070778 to LE), the Instituto de Salud Carlos III (RETICS RD06/0020/0010 to OB, RD06/0020/0029 to JP and RD06/0020/0098 to A. Bigas), the Comunidad Autonoma de Madrid (Oncocycle Program grant S2006/BIO-0232 to JP) and the Generalitat de Catalunya (grant SGR 09-1382 to OB). GG is supported by a fellowship from AGAUR of the Catalonian Government. AB is supported by grants from the Association pour la recherché sur le Cancer, Ligue Nationale Contre le Cancer and Institue National du Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Bachs.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pippa, R., Espinosa, L., Gundem, G. et al. p27Kip1 represses transcription by direct interaction with p130/E2F4 at the promoters of target genes. Oncogene 31, 4207–4220 (2012). https://doi.org/10.1038/onc.2011.582

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.582

Keywords

  • p27
  • p130
  • E2F4
  • transcription

This article is cited by

Search

Quick links