Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of Tumorigenicity-14, encoding matriptase, is a critical suppressor of colitis and colitis-associated colon carcinogenesis

Abstract

Colitis-associated colorectal cancers are an etiologically distinct subgroup of colon cancers that occur in individuals suffering from inflammatory bowel disease and arise as a consequence of persistent exposure of hyperproliferative epithelial stem cells to an inflammatory microenvironment. An intrinsic defect in the intestinal epithelial barrier has been proposed to be one of several factors that contribute to the inappropriate immune response to the commensal microbiota that underlies inflammatory bowel disease. Matriptase is a membrane-anchored serine protease encoded by Suppression of Tumorigenicity-14 (ST14) that strengthens the intestinal epithelial barrier by promoting tight junction formation. Here, we show that intestinal epithelial-specific ablation of St14 in mice causes formation of colon adenocarcinoma with very early onset and high penetrance. Neoplastic progression is preceded by a chronic inflammation of the colon that resembles human inflammatory bowel disease and is promoted by the commensal microbiota. This study demonstrates that inflammation-associated colon carcinogenesis can be initiated and promoted solely by an intrinsic intestinal permeability barrier perturbation, establishes St14 as a critical tumor-suppressor gene in the mouse gastrointestinal tract and adds matriptase to the expanding list of pericellular proteases with tumor-suppressive functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Acuff HB, Sinnamon M, Fingleton B, Boone B, Levy SE, Chen X et al. (2006). Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Res 66: 7968–7975.

    Article  CAS  PubMed  Google Scholar 

  • Andreasen PA, Egelund R, Petersen HH . (2000). The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci 57: 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A et al. (2003). Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35: 252–257.

    Article  CAS  PubMed  Google Scholar 

  • Berg DJ, Davidson N, Kuhn R, Muller W, Menon S, Holland G et al. (1996). Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98: 1010–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt AS, Welm A, Farady CJ, Vasquez M, Wilson K, Craik CS . (2007). Coordinate expression and functional profiling identify an extracellular proteolytic signaling pathway. Proc Natl Acad Sci USA 104: 5771–5776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgono CA, Diamandis EP . (2004). The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 4: 876–890.

    Article  CAS  PubMed  Google Scholar 

  • Bugge TH, Antalis TM, Wu Q . (2009). Type II transmembrane serine proteases. J Biol Chem 284: 23177–23181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzza MS, Netzel-Arnett S, Shea-Donohue T, Zhao A, Lin CY, List K et al. (2010). Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine. Proc Natl Acad Sci USA 107: 4200–4205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Fukushima T, Takahashi N, Tanaka H, Kataoka H . (2009). Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases. Cancer Res 69: 1828–1835.

    Article  CAS  PubMed  Google Scholar 

  • Danese S, Mantovani A . (2010). Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene 29: 3313–3323.

    Article  CAS  PubMed  Google Scholar 

  • de Lau W, Barker N, Clevers H . (2007). WNT signaling in the normal intestine and colorectal cancer. Front Biosci 12: 471–491.

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y et al. (2010). A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176: 952–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engle SJ, Ormsby I, Pawlowski S, Boivin GP, Croft J, Balish E et al. (2002). Elimination of colon cancer in germ-free transforming growth factor beta 1-deficient mice. Cancer Res 62: 6362–6366.

    CAS  PubMed  Google Scholar 

  • Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K, Plank B et al. (2003). CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol 162: 691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Ku K, Hodzic E, Lorenzana E, Freet K, Barthold SW . (2005). Differential detection of five mouse-infecting helicobacter species by multiplex PCR. Clin Diagn Lab Immunol 12: 531–536.

    PubMed  PubMed Central  Google Scholar 

  • Forbs D, Thiel S, Stella MC, Sturzebecher A, Schweinitz A, Steinmetzer T et al. (2005). In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 27: 1061–1070.

    PubMed  Google Scholar 

  • Garrett WS, Punit S, Gallini CA, Michaud M, Zhang D, Sigrist KS et al. (2009). Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16: 208–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaspar C, Cardoso J, Franken P, Molenaar L, Morreau H, Moslein G et al. (2008). Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. Am J Pathol 172: 1363–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale LP, Perera D, Gottfried MR, Maggio-Price L, Srinivasan S, Marchuk D . (2007). Neonatal co-infection with helicobacter species markedly accelerates the development of inflammation-associated colonic neoplasia in IL-10(-/-) mice. Helicobacter 12: 598–604.

    Article  PubMed  Google Scholar 

  • Hardwick JC, Kodach LL, Offerhaus GJ, van den Brink GR . (2008). Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 8: 806–812.

    Article  CAS  PubMed  Google Scholar 

  • Ihara S, Miyoshi E, Ko JH, Murata K, Nakahara S, Honke K et al. (2002). Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1–6 GlcNAc branching. J Biol Chem 277: 16960–16967.

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, Lin CY et al. (2006). Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  • Kaiser S, Park YK, Franklin JL, Halberg RB, Yu M, Jessen WJ et al. (2007). Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer. Genome Biol 8: R131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaser A, Zeissig S, Blumberg RS . (2010). Inflammatory bowel disease. Annu Rev Immunol 28: 573–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessenbrock K, Plaks V, Werb Z . (2010). Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141: 52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick LM, Harris RL, Owen KA, Bass R, Ghorayeb C, Bar-Or A et al. (2006). Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase. Blood 108: 2616–2623.

    Article  CAS  PubMed  Google Scholar 

  • Kim MG, Chen C, Lyu MS, Cho EG, Park D, Kozak C et al. (1999). Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49: 420–428.

    Article  CAS  PubMed  Google Scholar 

  • Lacy-Hulbert A, Smith AM, Tissire H, Barry M, Crowley D, Bronson RT et al. (2007). Ulcerative colitis and autoimmunity induced by loss of myeloid alphav integrins. Proc Natl Acad Sci USA 104: 15823–15828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SL, Dickson RB, Lin CY . (2000). Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275: 36720–36725.

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Anders J, Johnson M, Sang QA, Dickson RB . (1999). Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 274: 18231–18236.

    Article  CAS  PubMed  Google Scholar 

  • List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, Swaim W et al. (2002). Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21: 3765–3779.

    Article  CAS  PubMed  Google Scholar 

  • List K, Kosa P, Szabo R, Bey AL, Wang CB, Molinolo A et al. (2009). Epithelial integrity is maintained by a matriptase-dependent proteolytic pathway. Am J Pathol 175: 1453–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, Murdock T et al. (2005). Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19: 1934–1950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Otin C, Matrisian LM . (2007). Emerging roles of proteases in tumour suppression. Nat Rev Cancer 7: 800–808.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Palavalli LH, Samuels Y . (2009). Protective roles of matrix metalloproteinases: from mouse models to human cancer. Cell Cycle 8: 3657–3662.

    Article  CAS  PubMed  Google Scholar 

  • Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL . (2002). Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem 277: 33275–33283.

    Article  CAS  PubMed  Google Scholar 

  • Maggio-Price L, Treuting P, Zeng W, Tsang M, Bielefeldt-Ohmann H, Iritani BM . (2006). Helicobacter infection is required for inflammation and colon cancer in SMAD3-deficient mice. Cancer Res 66: 828–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCawley LJ, Crawford HC, King Jr LE, Mudgett J, Matrisian LM . (2004). A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Res 64: 6965–6972.

    Article  CAS  PubMed  Google Scholar 

  • McCawley LJ, Wright J, LaFleur BJ, Crawford HC, Matrisian LM . (2008). Keratinocyte expression of MMP3 enhances differentiation and prevents tumor establishment. Am J Pathol 173: 1528–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medema JP, Vermeulen L . (2011). Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature 474: 318–326.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MM, Sloane BF . (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 6: 764–775.

    Article  CAS  PubMed  Google Scholar 

  • Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX et al. (2006). Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281: 32941–32945.

    Article  CAS  PubMed  Google Scholar 

  • Netzel-Arnett S, Hooper JD, Szabo R, Madison EL, Quigley JP, Bugge TH et al. (2003). Membrane anchored serine proteases: a rapidly expanding group of cell surface proteolytic enzymes with potential roles in cancer. Cancer Metastasis Rev 22: 237–258.

    Article  CAS  PubMed  Google Scholar 

  • Newman JV, Kosaka T, Sheppard BJ, Fox JG, Schauer DB . (2001). Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis 184: 227–230.

    Article  CAS  PubMed  Google Scholar 

  • Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY . (2003). The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 278: 26773–26779.

    Article  CAS  PubMed  Google Scholar 

  • Okayasu I, Ohkusa T, Kajiura K, Kanno J, Sakamoto S . (1996). Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut 39: 87–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okayasu I, Yamada M, Mikami T, Yoshida T, Kanno J, Ohkusa T . (2002). Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J Gastroenterol Hepatol 17: 1078–1083.

    Article  PubMed  Google Scholar 

  • Owen KA, Qiu D, Alves J, Schumacher AM, Kilpatrick LM, Li J et al. (2010). Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA. Biochem J 426: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Palavalli LH, Prickett TD, Wunderlich JR, Wei X, Burrell AS, Porter-Gill P et al. (2009). Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet 41: 518–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R . (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229–241.

    Article  CAS  PubMed  Google Scholar 

  • Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G et al. (2005). The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118: 3387–3395.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. (2004). ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riley LK, Franklin CL, Hook Jr RR, Besch-Williford C . (1996). Identification of murine helicobacters by PCR and restriction enzyme analyses. J Clin Microbiol 34: 942–946.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph U, Finegold MJ, Rich SS, Harriman GR, Srinivasan Y, Brabet P et al. (1995). Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 10: 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Saleh M, Trinchieri G . (2011). Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11: 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Sales KU, Masedunskas A, Bey AL, Rasmussen AL, Weigert R, List K et al. (2010). Matriptase initiates activation of epidermal pro-kallikrein and disease onset in a mouse model of Netherton syndrome. Nat Genet 42: 676–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandilands A, Sutherland C, Irvine AD, McLean WH . (2009). Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122: 1285–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreiber S, Rosenstiel P, Albrecht M, Hampe J, Krawczak M . (2005). Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6: 376–388.

    Article  CAS  PubMed  Google Scholar 

  • Shah SA, Simpson SJ, Brown LF, Comiskey M, de Jong YP, Allen D et al. (1998). Development of colonic adenocarcinomas in a mouse model of ulcerative colitis. Inflamm Bowel Dis 4: 196–202.

    Article  CAS  PubMed  Google Scholar 

  • Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y et al. (2006). Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38: 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Bissell MJ, Werb Z . (2000). The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19: 1102–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98: 137–146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Shen L, Clayburgh DR, Nalle SC, Sullivan EA, Meddings JB et al. (2009). Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136: 551–563.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Kobayashi H, Kanayama N, Saga Y, Lin CY, Dickson RB et al. (2004). Inhibition of tumor invasion by genomic down-regulation of matriptase through suppression of activation of receptor-bound pro-urokinase. J Biol Chem 279: 14899–14908.

    Article  CAS  PubMed  Google Scholar 

  • Szabo R, Bugge TH . (2011). Membrane anchored serine proteases in cell and developmental biology. Annu Rev Cell Dev Biol 27: 213–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer J, Molinolo A et al. (2011). c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30: 2003–2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi T, Harris JL, Huang W, Yan KW, Coughlin SR, Craik CS . (2000). Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem 275: 26333–26342.

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Shuman MA, Craik CS . (1999). Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci USA 96: 11054–11061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, O'Brien TJ . (2001). Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 22: 104–114.

    Article  CAS  PubMed  Google Scholar 

  • Ustach CV, Huang W, Conley-LaComb MK, Lin CY, Che M, Abrams J et al. (2010). A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer Res 70: 9631–9640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Limbergen J, Wilson DC, Satsangi J . (2009). The genetics of Crohn's disease. Annu Rev Genomics Hum Genet 10: 89–116.

    Article  CAS  PubMed  Google Scholar 

  • Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S et al. (2002). Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–1729.

    Article  CAS  PubMed  Google Scholar 

  • Xavier RJ, Podolsky DK . (2007). Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427–434.

    Article  CAS  PubMed  Google Scholar 

  • Zeki SS, Graham TA, Wright NA . (2011). Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol 8: 90–100.

    Article  PubMed  Google Scholar 

  • Zhang Y, Cai X, Schlegelberger B, Zheng S . (1998). Assignment1 of human putative tumor suppressor genes ST13 (alias SNC6) and ST14 (alias SNC19) to human chromosome bands 22q13 and 11q24—>q25 by in situ hybridization. Cytogenet Cell Genet 83: 56–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs Jerrold M Ward, Robert D Cardiff and Stephen M Hewitt for pathology advice, Drs Vyomesh Patel and Kantima Leelahavanichkul for help with the array analysis, Dr Myrna Mandel for helicobacter testing, as well as Drs Silvio Gutkind and Mary Jo Danton for critically reviewing this manuscript. Histology was performed by Histoserv Inc. (Germantown, MD, USA). This study was supported by the NIDCR Intramural Research Program (THB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T H Bugge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosa, P., Szabo, R., Molinolo, A. et al. Suppression of Tumorigenicity-14, encoding matriptase, is a critical suppressor of colitis and colitis-associated colon carcinogenesis. Oncogene 31, 3679–3695 (2012). https://doi.org/10.1038/onc.2011.545

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.545

Keywords

This article is cited by

Search

Quick links