Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer

Abstract

Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase–PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced ‘mesenchymal gene’ expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S . (2009). Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11: R46.

    PubMed  PubMed Central  Google Scholar 

  • Bonnomet A, Brysse A, Tachsidis A, Waltham M, Thompson EW, Polette M et al. (2010). Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15: 261–273.

    Article  PubMed  Google Scholar 

  • Chaffer CL, Brennan JP, Slavin JL, Blick T, Thompson EW, Williams ED . (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: role of fibroblast growth factor receptor-2. Cancer Res 66: 11271–11278.

    Article  CAS  PubMed  Google Scholar 

  • Chao YL, Shepard CR, Wells A . (2010). Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer 9: 179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen X, Halberg RB, Burch RP, Dove WF . (2008). Intestinal adenomagenesis involves core molecular signatures of the epithelial-mesenchymal transition. J Mol Histol 39: 283–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarino M, Rubino B, Ballabio G . (2007). The role of epithelial-mesenchymal transition in cancer pathology. Pathology 39: 305–318.

    Article  CAS  PubMed  Google Scholar 

  • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S . (2011). Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res 13: R59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalluri R, Weinberg RA . (2009). The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klymkowsky MW, Savagner P . (2009). Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. Am J Pathol 174: 1588–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T et al. (2011). Direct targeting of Sec23a by miR-200 s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17: 1101–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y . (2009). Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 15: 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100: 672–679.

    Article  CAS  PubMed  Google Scholar 

  • Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT et al. (2006). Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19: 264–271.

    Article  CAS  PubMed  Google Scholar 

  • Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y et al. (2007). Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67: 9066–9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mego M, Mani SA, Lee BN, Li C, Evans KW, Cohen EN et al. (2011). Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer (e-pub ahead of print).

  • Noel A, Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM . (1993). Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer 68: 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oltean S, Sorg BS, Albrecht T, Bonano VI, Brazas RM, Dewhirst MW et al. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proc Natl Acad Sci USA 103: 14116–14121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantel K, Alix-Panabieres C . (2010). Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16: 398–406.

    Article  PubMed  Google Scholar 

  • Paterlini-Brechot P, Benali NL . (2007). Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253: 180–204.

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Olmeda D, Cano A . (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Polette M, Mestdagt M, Bindels S, Nawrocki-Raby B, Hunziker W, Foidart JM et al. (2007). Beta-catenin and ZO-1: shuttle molecules involved in tumor invasion-associated epithelial-mesenchymal transition processes. Cells Tissues Organs 185: 61–65.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Weinberg RA . (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL et al. (2009). Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci USA 106: 12903–12908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C et al. (2011). Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat 130: 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG et al. (2006). Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208: 495–506.

    Article  CAS  PubMed  Google Scholar 

  • Reichert M, Muller T, Hunziker W . (2000). The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of beta-catenin/Tcf/Lef signaling. J Biol Chem 275: 9492–9500.

    Article  CAS  PubMed  Google Scholar 

  • Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J . (2008). Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68: 989–997.

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP, Acloque H, Huang RY, Nieto MA . (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  • Trimboli AJ, Fukino K, de Bruin A, Wei G, Shen L, Tanner SM et al. (2008). Direct evidence for epithelial-mesenchymal transitions in breast cancer. Cancer Res 68: 937–945.

    Article  CAS  PubMed  Google Scholar 

  • Tsuji T, Ibaragi S, Hu GF . (2009). Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 69: 7135–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji T, Ibaragi S, Shima K, Hu MG, Katsurano M, Sasaki A et al. (2008). Epithelial-mesenchymal transition induced by growth suppressor p12CDK2-AP1 promotes tumor cell local invasion but suppresses distant colony growth. Cancer Res 68: 10377–10386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandewalle C, Van Roy F, Berx G . (2009). The role of the ZEB family of transcription factors in development and disease. Cell Mol Life Sci 66: 773–787.

    Article  CAS  PubMed  Google Scholar 

  • Willipinski-Stapelfeldt B, Riethdorf S, Assmann V, Woelfle U, Rau T, Sauter G et al. (2005). Changes in cytoskeletal protein composition indicative of an epithelial-mesenchymal transition in human micrometastatic and primary breast carcinoma cells. Clin Cancer Res 11: 8006–8014.

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Plieth D, Venkov C, Xu C, Neilson EG . (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63: 3386–3394.

    CAS  PubMed  Google Scholar 

  • Yang J, Weinberg RA . (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14: 818–829.

    Article  CAS  PubMed  Google Scholar 

  • Zhang A, Chen G, Meng L, Wang Q, Hu W, Xi L et al. (2008). Antisense-Snail transfer inhibits tumor metastasis by inducing E-cadherin expression. Anticancer Res 28: 621–628.

    PubMed  Google Scholar 

Download references

Acknowledgements

The research effort associated with this article was funded in part by the Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS, Belgium), the Foundation against Cancer (foundation of public interest, Belgium), the ‘C.G.R.I.-F.N.R.S.-INSERM Coopération’, the Fonds spéciaux de la Recherche (University of Liège), the Centre Anticancéreux près l’Université de Liège, the Fonds Léon Fredericq (University of Liège), the ‘Région Champagne-Ardenne’, the ‘Ligue Contre le Cancer’, the Lions Club of Soissons, Un Euro contre le Cancer and the Fond National pour la Santé ACI 2004-2010 INCa (Cancéropôle Grand-Est project), the US. Army Medical Research and Materiel Command (BC0213201 and BC084667), the Victorian Breast Cancer Research Consortium, Cancer Council Victoria (#509295), the National Breast Cancer Foundation (Australia). CG is a Senior Research Associate from the F.R.S.-FNRS (Belgium). AB is supported by the ‘Région Champagne-Ardenne’. We thank Nathalie Lefin and Benoît Brouwers for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Gilles.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnomet, A., Syne, L., Brysse, A. et al. A dynamic in vivo model of epithelial-to-mesenchymal transitions in circulating tumor cells and metastases of breast cancer. Oncogene 31, 3741–3753 (2012). https://doi.org/10.1038/onc.2011.540

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.540

Keywords

This article is cited by

Search

Quick links