Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death

Abstract

P53 has an important role in the processing of starvation signals. P53-dependent molecular mediators of the Warburg effect reduce glucose consumption and promote mitochondrial function. We therefore hypothesized that the retention of wild-type p53 characteristic of primary glioblastomas limits metabolic demands induced by deregulated signal transduction in the presence of hypoxia and nutrient depletion. Here we report that short hairpin RNA-mediated gene suppression of wild-type p53 or ectopic expression of mutant temperature-sensitive dominant-negative p53V135A increased glucose consumption and lactate production, decreased oxygen consumption and enhanced hypoxia-induced cell death in p53 wild-type human glioblastoma cells. Similarly, genetic knockout of p53 in HCT116 colon carcinoma cells resulted in reduced respiration and hypersensitivity towards hypoxia-induced cell death. Further, wild-type p53 gene silencing reduced the expression of synthesis of cytochrome c oxidase 2 (SCO2), an effector necessary for respiratory chain function. An SCO2 transgene reverted the metabolic phenotype and restored resistance towards hypoxia in p53-depleted and p53 mutant glioma cells in a rotenone-sensitive manner, demonstrating that this effect was dependent on intact oxidative phosphorylation. Supplementation with methyl-pyruvate, a mitochondrial substrate, rescued p53 wild-type but not p53 mutant cells from hypoxic cell death, demonstrating a p53-mediated selective aptitude to metabolize mitochondrial substrates. Further, SCO2 gene silencing in p53 wild-type glioma cells sensitized these cells towards hypoxia. Finally, lentiviral gene suppression of SCO2 significantly enhanced tumor necrosis in a subcutaneous HCT116 xenograft tumor model, compatible with impaired energy metabolism in these cells. These findings demonstrate that glioma and colon cancer cells with p53 wild-type status can skew the Warburg effect and thereby reduce their vulnerability towards tumor hypoxia in an SCO2-dependent manner. Targeting SCO2 may therefore represent a valuable strategy to enhance sensitivity towards hypoxia and may complement strategies targeting glucose metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AMPKα:

AMP-activated protein kinase α

hygro:

hygromycin

luc:

luciferase

p53ts:

temperature-sensitive p53

phospho:

phosphorylated

PI:

propidium iodide

puro:

puromycin

ROS:

reactive oxygen species

SCO2:

synthesis of cytochrome c oxidase 2

shRNA:

short hairpin RNA

siRNA:

small interfering RNA

References

  • Anderson AR, Weaver AM, Cummings PT, Quaranta V . (2006). Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127: 905–915.

    Article  CAS  PubMed  Google Scholar 

  • Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG et al. (2002). Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115: 2433–2442.

    CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Bhonde MR, Hanski ML, Notter M, Gillissen BF, Daniel PT, Zeitz M et al. (2006). Equivalent effect of DNA damage-induced apoptotic cell death or long-term cell cycle arrest on colon carcinoma cell proliferation and tumour growth. Oncogene 25: 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F et al. (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res 67: 6745–6752.

    Article  CAS  PubMed  Google Scholar 

  • Chan DA, Sutphin PD, Nguyen P, Turcotte S, Lai EW, Banh A et al. (2011). Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci Transl Med 3: 94ra70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe G, Horvath S, Cloughesy TF, Crosby K, Seligson D, Palotie A et al. (2003). Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 63: 2742–2746.

    CAS  PubMed  Google Scholar 

  • Corcoran CA, Huang Y, Sheikh MS . (2006). The regulation of energy generating metabolic pathways by p53. Cancer Biol Ther 5: 1610–1613.

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Newsholme EA . (1988). Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 250: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB . (2008). The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Dyer BW, Ferrer FA, Klinedinst DK, Rodriguez R . (2000). A noncommercial dual luciferase enzyme assay system for reporter gene analysis. Anal Biochem 282: 158–161.

    Article  CAS  PubMed  Google Scholar 

  • Efeyan A, Serrano M . (2007). p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6: 1006–1010.

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann J, Kolar Z, Kala M, Vojtesek B, Komenda S . (1995). Expression of p53 in glioblastoma multiforme cells: relationship to survival, proliferation and glycosylation. Cesk Patol 31: 87–91.

    CAS  PubMed  Google Scholar 

  • Fults D, Brockmeyer D, Tullous MW, Pedone CA, Cawthon RM . (1992). p53 mutation and loss of heterozygosity on chromosomes 17 and 10 during human astrocytoma progression. Cancer Res 52: 674–679.

    CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ . (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891–899.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb E . (2009). Cancer: the fat and the furious. Nature 461: 44–45.

    Article  CAS  PubMed  Google Scholar 

  • Guppy M, Greiner E, Brand K . (1993). The role of the Crabtree effect and an endogenous fuel in the energy metabolism of resting and proliferating thymocytes. Eur J Biochem 212: 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Jansen M, de Witt Hamer PC, Witmer AN, Troost D, van Noorden CJ . (2004). Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Brain Res Rev 45: 143–163.

    Article  CAS  PubMed  Google Scholar 

  • Jiang BH, Liu LZ . (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta 1784: 150–158.

    Article  CAS  PubMed  Google Scholar 

  • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y et al. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18: 283–293.

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Giese A, Deppert W . (2009). Wild-type p53 in cancer cells: when a guardian turns into a blackguard. Biochem Pharmacol 77: 11–20.

    Article  CAS  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J, Wang J, Degan P, Peters G et al. (2005). Glycolytic enzymes can modulate cellular life span. Cancer Res 65: 177–185.

    CAS  PubMed  Google Scholar 

  • Kopper L, Steel GG . (1975). The therapeutic response of three human tumor lines maintained in immune-suppressed mice. Cancer Res 35: 2704–2713.

    CAS  PubMed  Google Scholar 

  • Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M et al. (2004). Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13: 1839–1848.

    Article  CAS  PubMed  Google Scholar 

  • Leary SC, Sasarman F, Nishimura T, Shoubridge EA . (2009). Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1. Hum Mol Genet 18: 2230–2240.

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Laurell C, Selivanova G, Lundeberg J, Nilsson P, Wiman KG . (2007). Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis. Cell Death Differ 14: 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Sung HJ, Park JY, Matoba S, Hwang PM . (2007). A pivotal role for p53: balancing aerobic respiration and glycolysis. J Bioenerg Biomembr 39: 243–246.

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. (2006). p53 regulates mitochondrial respiration. Science 312: 1650–1653.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto S, Murphy AN, Brown JH . (2008). Akt mediates mitochondrial protection in cardiomyocytes through phosphorylation of mitochondrial hexokinase-II. Cell Death Differ 15: 521–529.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E . (2007). Energy metabolism in tumor cells. FEBS J 274: 1393–1418.

    Article  CAS  PubMed  Google Scholar 

  • Naumann U, Durka S, Weller M . (1998). Dexamethasone-mediated protection from drug cytotoxicity: association with p21WAF1/CIP1 protein accumulation? Oncogene 17: 1567–1575.

    Article  CAS  PubMed  Google Scholar 

  • Ohgaki H, Kleihues P . (2007). Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170: 1445–1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puduvalli VK, Sawaya R . (2000). Antiangiogenesis—therapeutic strategies and clinical implications for brain tumors. J Neurooncol 50: 189–200.

    Article  CAS  PubMed  Google Scholar 

  • Rieger J, Bahr O, Muller K, Franz K, Steinbach J, Hattingen E . (2010). Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol 99: 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Ryan JJ, Danish R, Gottlieb CA, Clarke MF . (1993). Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol Cell Biol 13: 711–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN et al. (2008). Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest 118: 3930–3942.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbach JP, Wolburg H, Klumpp A, Probst H, Weller M . (2003). Hypoxia-induced cell death in human malignant glioma cells: energy deprivation promotes decoupling of mitochondrial cytochrome c release from caspase processing and necrotic cell death. Cell Death Differ 10: 823–832.

    Article  CAS  PubMed  Google Scholar 

  • Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. (2003). Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9: 493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung HJ, Ma W, Wang PY, Hynes J, O'Riordan TC, Combs CA et al. (2010). Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 1: 5. doi:10.1038/ncomms1003.

    Article  CAS  Google Scholar 

  • Tohma Y, Gratas C, Van Meir EG, Desbaillets I, Tenan M, Tachibana O et al. (1998). Necrogenesis and Fas/APO-1 (CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 57: 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE et al. (1994). Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54: 649–652.

    CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: RESEARCH0034.

    Article  Google Scholar 

  • Van Meir EG, Kikuchi T, Tada M, Li H, Diserens AC, Wojcik BE et al. (1994). Analysis of the p53 gene and its expression in human glioblastoma cells. Cancer Res 54: 649–652.

    CAS  PubMed  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Warburg O . (1956a). On respiratory impairment in cancer cells. Science 124: 269–270.

    CAS  PubMed  Google Scholar 

  • Warburg O . (1956b). On the origin of cancer cells. Science 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P, Ohgaki H . (1996). Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6: 217–223; discussion 23–4.

    Article  CAS  PubMed  Google Scholar 

  • Wischhusen J, Melino G, Weller M . (2004). p53 and its family members—reporter genes may not see the difference. Cell Death Differ 11: 1150–1152.

    Article  CAS  PubMed  Google Scholar 

  • Wischhusen J, Naumann U, Ohgaki H, Rastinejad F, Weller M . (2003). CP-31398, a novel p53-stabilizing agent, induces p53-dependent and p53-independent glioma cell death. Oncogene 22: 8233–8245.

    Article  CAS  PubMed  Google Scholar 

  • Yoon CH, Lee ES, Lim DS, Bae YS . (2009). PKR, a p53 target gene, plays a crucial role in the tumor-suppressor function of p53. Proc Natl Acad Sci USA 106: 7852–7857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Chen XQ, Du JZ . (2009). Cellular adaptation to hypoxia and p53 transcription regulation. J Zhejiang Univ Sci B 10: 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P Hwang for providing the SCO2 expression plasmid and B Vogelstein for the HCT116 p53+/+ and p53−/− cell lines. This work was supported by The Deutsche Forschungsgemeinschaft (GRK 1302/1). The Dr Senckenberg Institute of Neurooncology is supported by the Hertie foundation and the Dr Senckenberg foundation. JPS is ‘Hertie Professor for Neurooncology’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Rieger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanka, C., Brucker, D., Bähr, O. et al. Synthesis of cytochrome c oxidase 2: a p53-dependent metabolic regulator that promotes respiratory function and protects glioma and colon cancer cells from hypoxia-induced cell death. Oncogene 31, 3764–3776 (2012). https://doi.org/10.1038/onc.2011.530

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.530

Keywords

This article is cited by

Search

Quick links