Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells

Abstract

Here we show that pemetrexed-treated mesothelioma cells undergo accelerated senescence. This is characterized by the secretion of proinflammatory and mitogenic cytokines, reminiscent of an SASP (senescence-associated secretory phenotype). Conditioned media from senescent MPM (malignant pleural mesothelioma) cells trigger the emergence of EMT (epithelial-to-mesenchymal)-like, clonogenic and chemoresistant cell subpopulations, expressing high levels of ALDH (aldehyde dehydrogenase) activity (ALDHbright cells). We show by fluorescence-activated cell sorting of purified ALDHbright and ALDHlow cells, that both cell-autonomous and cell-non-autonomous mechanisms converge to maintain the SASP-induced, EMT-like cell subpopulations. Chemoresistant ALDHbright cells exist within primary MPM specimens and enrichment for ALDHbright cells correlates with an earlier tumor onset into NOD/SCID mice. We show that RASv12 expression induces SASP-like changes in untransformed human mesothelial cells, and that p53 ablation increases the effect of RASv12 expression. We identify STAT3 activation as a crucial event downstream to SASP signaling. In fact, small hairpin RNA-mediated ablation of STAT3 deeply attenuates the induction of EMT genes and the increase of ALDHbright cells induced by SASP-cytokines. This strongly affects the chemoresistance of MPM cells in vitro and leads to anticancer effects in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EMT:

epithelial-to-mesenchymal–transition

MPE:

mesothelial peritoneal exudate

SASP:

senescence-associated-secretory-phenotype

TICs:

tumor-initiating–cells

References

  • Achcar Rde O, Cagle PT, Jagirdar J . (2007). Expression of activated and latent signal transducer and activator of transcription 3 in 303 non-small cell lung carcinomas and 44 malignant mesotheliomas: possible role for chemotherapeutic intervention. Arch Pathol Lab Med 131: 1350–1360.

    PubMed  Google Scholar 

  • Adhikari AS, Agarwal N, Iwakuma T . (2011). Metastatic potential of tumor-initiating cells in solid tumors. Front Biosci 16: 1927–1938.

    Article  CAS  Google Scholar 

  • Albonici L, Doldo E, Palumbo C, Orlandi A, Bei R, Pompeo E et al. (2009). Placenta growth factor is a survival factor for human malignant mesothelioma cells. Int J Immunopathol Pharmacol 22: 389–401.

    Article  CAS  PubMed  Google Scholar 

  • Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA et al. (2007). Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 18: 2004–2013.

    Article  CAS  PubMed  Google Scholar 

  • Bais C, Wu X, Yao J, Yang S, Crawford Y, McCutcheon K et al. (2010). PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell 141: 166–177.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA . (2004). When cells get stressed: an integrative view of cellular senescence. J Clin Invest 113: 8–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campisi J . (2001). Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol 11: S27–S31.

    Article  CAS  PubMed  Google Scholar 

  • Casarsa C, Bassani N, Ambrogi F, Zabucchi G, Boracchi P, Biganzoli E et al. (2011). Epithelial-to-mesenchymal transition, cell polarity and stemness-associated features in malignant pleural mesothelioma. Cancer Lett 302: 136–143.

    Article  CAS  PubMed  Google Scholar 

  • Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al. (2010). Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16: 45–55.

    Article  CAS  PubMed  Google Scholar 

  • Cioce M, Gherardi S, Viglietto G, Strano S, Blandino G, Muti P et al. (2010). Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-like- and early progenitor-targeting drugs. Cell Cycle 9: 2878–2887.

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J . (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5: 99–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853–2868.

    Article  CAS  PubMed  Google Scholar 

  • Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY . (2007). MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67: 8433–8438.

    Article  CAS  PubMed  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O . (2009). Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4: 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  • Fujino S, Yokoyama A, Kohno N, Hiwada K . (1996). Interleukin 6 is an autocrine growth factor for normal human pleural mesothelial cells. Am J Respir Cell Mol Biol 14: 508–515.

    Article  CAS  PubMed  Google Scholar 

  • Galffy G, Mohammed KA, Dowling PA, Nasreen N, Ward MJ, Antony VB . (1999). Interleukin 8: an autocrine growth factor for malignant mesothelioma. Cancer Res 59: 367–371.

    CAS  PubMed  Google Scholar 

  • Hazarika M, White Jr RM, Booth BP, Wang YC, Ham DY, Liang CY et al. (2005). Pemetrexed in malignant pleural mesothelioma. Clin Cancer Res 11: 982–992.

    CAS  PubMed  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature 447: 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermeking H . (2007). p53 enters the microRNA world. Cancer Cell 12: 414–418.

    Article  CAS  PubMed  Google Scholar 

  • Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Beuschel SL, Butnor KJ et al. (2010). Inflammation precedes the development of human malignant mesotheliomas in a SCID mouse xenograft model. Ann N Y Acad Sci 1203: 7–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Jiang T, Zhu L, Liu J, Cao J, Huang KJ et al. (2011a). STAT3-targeting RNA interference inhibits pancreatic cancer angiogenesis in vitro and in vivo. Int J Oncol 38: 1637–1644.

    CAS  PubMed  Google Scholar 

  • Huang C, Yang G, Jiang T, Zhu G, Li H, Qiu Z . (2011b). The effects and mechanisms of blockage of STAT3 signaling pathway on IL-6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 58: 396–405.

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Kim DG, Park SH, Hwang YI, Jang SH, Kim CH et al. (2011). Epithelial to mesenchymal transition of mesothelial cells in tuberculous pleurisy. Yonsei Med J 52: 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S et al. (2011). Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer.

  • Kubo T, Toyooka S, Tsukuda K, Sakaguchi M, Fukazawa T, Soh J et al. (2011). Epigenetic silencing of microRNA-34b/c lays an important role in the pathogenesis of malignant pleural mesothelioma. Clin Cancer Res 17: 4965–4974.

    Article  CAS  PubMed  Google Scholar 

  • Laberge RM, Awad P, Campisi J, Desprez PY . (2011). Epithelial-mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron.

  • Li Q, Yano S, Ogino H, Wang W, Uehara H, Nishioka Y et al. (2007). The therapeutic efficacy of anti vascular endothelial growth factor antibody, bevacizumab, and pemetrexed against orthotopically implanted human pleural mesothelioma cells in severe combined immunodeficient mice. Clin Cancer Res 13: 5918–5925.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71: 614–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma I, Allan AL . (2011). The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev 7: 292–306.

    Article  CAS  Google Scholar 

  • Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M et al. (2011). Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29: 32–45.

    Article  CAS  PubMed  Google Scholar 

  • Metcalf RA, Welsh JA, Bennett WP, Seddon MB, Lehman TA, Pelin K et al. (1992). p53 and Kirsten-ras mutations in human mesothelioma cell lines. Cancer Res 52: 2610–2615.

    CAS  PubMed  Google Scholar 

  • Mor O, Yaron P, Huszar M, Yellin A, Jakobovitz O, Brok-Simoni F et al. (1997). Absence of p53 mutations in malignant mesotheliomas. Am J Respir Cell Mol Biol 16: 9–13.

    Article  CAS  PubMed  Google Scholar 

  • Mujoomdar AA, Tilleman TR, Richards WG, Bueno R, Sugarbaker DJ . (2010). Prevalence of in vitro chemotherapeutic drug resistance in primary malignant pleural mesothelioma: Result in a cohort of 203 resection specimens. J Thorac Cardiovasc Surg 140: 352–355.

    Article  CAS  PubMed  Google Scholar 

  • Oka M, Sakaguchi M, Okada T, Nagai H, Ozaki M, Yoshioka T et al. (2010). Signal transducer and activator of transcription 3 upregulates interleukin-8 expression at the level of transcription in human melanoma cells. Exp Dermatol 19: e50–e55.

    Article  PubMed  Google Scholar 

  • Park JS, Kim YS, Jee YK, Myong NH, Lee KY . (2003). Interleukin-8 production in tuberculous pleurisy: role of mesothelial cells stimulated by cytokine network involving tumour necrosis factor-alpha and interleukin-1 beta. Scand J Immunol 57: 463–469.

    Article  CAS  PubMed  Google Scholar 

  • Pompeo E, Albonici L, Doldo E, Orlandi A, Manzari V, Modesti A et al. (2009). Placenta growth factor expression has prognostic value in malignant pleural mesothelioma. Ann Thorac Surg 88: 426–431.

    Article  PubMed  Google Scholar 

  • Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J . (2005). Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37: 977–990.

    Article  CAS  PubMed  Google Scholar 

  • Ruco LP, de Laat PA, Matteucci C, Bernasconi S, Sciacca FM, van der Kwast TH et al. (1996). Expression of ICAM-1 and VCAM-1 in human malignant mesothelioma. J Pathol 179: 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Scarpa S, Giuffrida A, Palumbo C, Coletti A, Cerrito MG, Vasaturo F et al. (2002). Retinoic acid inhibits fibronectin and laminin synthesis and cell migration of human pleural mesothelioma in vitro. Oncol Rep 9: 205–209.

    CAS  PubMed  Google Scholar 

  • Schindler C, Levy DE, Decker T . (2007). JAK-STAT signaling: from interferons to cytokines. J Biol Chem 282: 20059–20063.

    Article  CAS  PubMed  Google Scholar 

  • Schramm A, Opitz I, Thies S, Seifert B, Moch H, Weder W et al. (2010). Prognostic significance of epithelial-mesenchymal transition in malignant pleural mesothelioma. Eur J Cardiothorac Surg 37: 566–572.

    Article  PubMed  Google Scholar 

  • Sidi R, Pasello G, Opitz I, Soltermann A, Tutic M, Rehrauer H et al. (2011). Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer 47: 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Sivertsen S, Hadar R, Elloul S, Vintman L, Bedrossian C, Reich R et al. (2006). Expression of Snail, Slug and Sip1 in malignant mesothelioma effusions is associated with matrix metalloproteinase, but not with cadherin expression. Lung Cancer 54: 309–317.

    Article  PubMed  Google Scholar 

  • Suzuki Y, Sakai K, Ueki J, Xu Q, Nakamura T, Shimada H et al. (2010). Inhibition of Met/HGF receptor and angiogenesis by NK4 leads to suppression of tumor growth and migration in malignant pleural mesothelioma. Int J Cancer 127: 1948–1957.

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S . (2000). STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev 11: 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Tolnay E, Kuhnen C, Wiethege T, Konig JE, Voss B, Muller KM . (1998). Hepatocyte growth factor/scatter factor and its receptor c-Met are overexpressed and associated with an increased microvessel density in malignant pleural mesothelioma. J Cancer Res Clin Oncol 124: 291–296.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Park P, Zhang H, La Marca F, Lin CY . (2011). Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer 128: 294–303.

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Wu X, Zhuang G, Kasman IM, Vogt T, Phan V et al. (2011). Expression of a functional VEGFR-1 in tumor cells is a major determinant of anti-PlGF antibodies efficacy. Proc Natl Acad Sci USA 108: 11590–11595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AR, Narita M . (2009). SASP reflects senescence. EMBO Rep 10: 228–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Tania Merlino (Regina Elena Cancer Institute, Rome) for revising and proofreading the manuscript and Dr Frank Sinicrope (Rochester, MN) for the ShSTAT3 vectors available at ADDGENE (UK). We acknowledge INAIL (Italian Workers’ Compensation Authority) for grant support to GB.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Blandino or M Cioce.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canino, C., Mori, F., Cambria, A. et al. SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene 31, 3148–3163 (2012). https://doi.org/10.1038/onc.2011.485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.485

Keywords

This article is cited by

Search

Quick links