Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output

Abstract

The transcription factor Sox4 is aberrantly expressed in many human tumors and can modulate tumorigenesis and metastases of murine tumors in vivo. However, mechanisms that control Sox4 function remain poorly defined. It has recently been observed that DNA damage increases Sox4 protein expression independently of Sox4 mRNA levels, suggesting an as yet undefined post-transcriptional mechanism regulating Sox4 expression and functionality. Here, we show that Sox4 protein is rapidly degraded by the proteasome as indicated by pharmacological inhibition with Mg132 and epoxymycin. Sox4 half-life was found to be less than 1 h as evident by inhibition of protein synthesis using cycloheximide. Ectopic expression of Sox4 deletion mutants revealed that the C-terminal 33 residues of Sox4 were critical in modulating its degradation in a polyubiquitin-independent manner. Syntenin, a Sox4 binding partner, associates with this domain and was found to stabilize Sox4 expression. Syntenin-induced stabilization of Sox4 correlated with Sox4-syntenin relocalization to the nucleus, where both proteins accumulate. Syntenin overexpression or knockdown in human tumor cell lines was found to reciprocally modulate Sox4 protein expression and transcriptional activity implicating its role as a regulator of Sox4. Taken together, our data demonstrate that the Sox4 C-terminal domain regulates polyubiquitin-independent proteasomal degradation of Sox4 that can be modulated by interaction with syntenin. As aberrant Sox4 expression has been found associated with many human cancers, modulation of Sox4 proteasomal degradation may impact oncogenesis and metastatic properties of tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Asher G, Reuven N, Shaul Y . (2006). 20S proteasomes and protein degradation “by default”. Bioessays 28: 844–849.

    Article  CAS  Google Scholar 

  • Asher G, Shaul Y . (2006). Ubiquitin-independent degradation: lessons from the p53 model. Isr Med Assoc J 8: 229–232.

    CAS  PubMed  Google Scholar 

  • Basbous J, Jariel-Encontre I, Gomard T, Bossis G, Piechaczyk M . (2008). Ubiquitin-independent- versus ubiquitin-dependent proteasomal degradation of the c-Fos and Fra-1 transcription factors: is there a unique answer? Biochimie 90: 296–305.

    Article  CAS  Google Scholar 

  • Beekman JM, Bakema JE, van de Winkel JGJ, Leusen JHW . (2004). Direct interaction between FcgammaRI (CD64) and periplakin controls receptor endocytosis and ligand binding capacity. Proc Natl Acad Sci USA 101: 10392–10397.

    Article  CAS  Google Scholar 

  • Beekman JM, Coffer PJ . (2008). The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 121: 1349–1355.

    Article  CAS  Google Scholar 

  • Beekman JM, Verhagen LP, Geijsen N, Coffer PJ . (2009). Regulation of myelopoiesis through syntenin-mediated modulation of IL-5 receptor output. Blood 114: 3917–3927.

    Article  CAS  Google Scholar 

  • Belizario JE, Alves J, Garay-Malpartida M, Occhiucci JM . (2008). Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. Curr Protein Pept Sci 9: 210–220.

    Article  CAS  Google Scholar 

  • Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J . (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev 20: 3475–3486.

    Article  CAS  Google Scholar 

  • Bhattaram P, Penzo-Mendez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A . (2010). Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun 1: 9.

    Article  Google Scholar 

  • Boukerche H, Aissaoui H, Prévost C, Hirbec H, Das SK, Su ZZ . (2010). Mda-9/Syntenin promotes metastasis in human melanoma cells by activating c-Src. Oncogene 29: 3054–3066.

    Article  CAS  Google Scholar 

  • Boukerche H, Su ZZ, Prévot C, Sarkar D, Fisher PB . (2008). Src kinase activation is mandatory for MDA-9/syntenin-mediated activation of nuclear factor-kappaB. Proc Natl Acad Sci USA 105: 15914–15919.

    Article  CAS  Google Scholar 

  • Bowles J, Schepers G, Koopman P . (2000). Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227: 239–255.

    Article  CAS  Google Scholar 

  • Dy P, Penzo-Mendez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V . (2008). The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res 36: 3101–3117.

    Article  CAS  Google Scholar 

  • Dyson HJ, Wright PE . (2005). Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6: 197–208.

    Article  CAS  Google Scholar 

  • Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL . (2001). Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15: 50–65.

    Article  CAS  Google Scholar 

  • Fietta P, Delsante G . (2010). Proteasomes and immunoproteasomes. Riv Biol 103: 29–50.

    PubMed  Google Scholar 

  • Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JA . (2001). Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science 293: 1136–1138.

    Article  CAS  Google Scholar 

  • Goldberg AL . (2003). Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899.

    Article  CAS  Google Scholar 

  • Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Dürr J . (1997). Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci USA 94: 13683–13688.

    Article  CAS  Google Scholar 

  • Hoser M, Potzner MR, Koch JM, Bosl MR, Wegner M, Sock E . (2008). Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol 28: 4675–4687.

    Article  CAS  Google Scholar 

  • Hunt SM, Clarke CL . (1999). Expression and hormonal regulation of the Sox4 gene in mouse female reproductive tissues. Biol Reprod 61: 476–481.

    Article  CAS  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M . (2006). Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22: 159–180.

    Article  CAS  Google Scholar 

  • Krappmann D, Wulczyn FG, Scheidereit C . (1996). Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J 15: 6716–6726.

    Article  CAS  Google Scholar 

  • Kruger E, Kloetzel PM, Enenkel C . (2001). 20S proteasome biogenesis. Biochimie 83: 289–293.

    Article  CAS  Google Scholar 

  • Kwak J, Workman JL, Lee D . (2010). The proteasome and its regulatory roles in gene expression. Biochim Biophys Acta 1809: 88–96.

    Article  Google Scholar 

  • Lambaerts K, Wilcox-Adelman SA, Zimmermann P . (2009). The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 21: 662–669.

    Article  CAS  Google Scholar 

  • Lin JJ, Jiang H, Fisher PB . (1998). Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene 207: 105–110.

    Article  CAS  Google Scholar 

  • Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D . (2002). Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32: 160–165.

    Article  CAS  Google Scholar 

  • Malki S, Boizet-Bonhoure B, Poulat F . (2010). Shuttling of SOX proteins. Int J Biochem Cell Biol 42: 411–416.

    Article  CAS  Google Scholar 

  • Medina PP, Castillo SD, Blanco S, Sanz-Garcia M, Largo C, Alvarez S . (2009). The SRY-HMG box gene, SOX4, is a target of gene amplification at chromosome 6p in lung cancer. Hum Mol Genet 18: 1343–1352.

    Article  CAS  Google Scholar 

  • Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D . (2007). Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci 120: 2785–2795.

    Article  CAS  Google Scholar 

  • Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T . (2009). Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci USA 106: 3788–3793.

    Article  CAS  Google Scholar 

  • Penzo-Mendez AI . (2010). Critical roles for SoxC transcription factors in development and cancer. Int J Biochem Cell Biol 42: 425–428.

    Article  CAS  Google Scholar 

  • Potzner MR, Tsarovina K, Binder E, Penzo-Mendez A, Lefebvre V, Rohrer H . (2010). Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development 137: 775–784.

    Article  CAS  Google Scholar 

  • Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A . (2004). An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 11: 830–837.

    Article  CAS  Google Scholar 

  • Rechsteiner M, Rogers SW . (1996). PEST sequences and regulation by proteolysis. Trends Biochem Sci 21: 267–271.

    Article  CAS  Google Scholar 

  • Reits EA, Benham AM, Plougastel B, Neefjes J, Trowsdale J . (1997). Dynamics of proteasome distribution in living cells. EMBO J 16: 6087–6094.

    Article  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D . (2004). Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101: 9309–9314.

    Article  CAS  Google Scholar 

  • Sarkar D, Boukerche H, Su ZZ, Fisher PB . (2004). Mda-9/syntenin: recent insights into a novel cell signaling and metastasis-associated gene. Pharmacol Ther 104: 101–115.

    Article  CAS  Google Scholar 

  • Sarkar D, Boukerche H, Su ZZ, Fisher PB . (2008). Mda-9/Syntenin: more than just a simple adapter protein when it comes to cancer metastasis. Cancer Res 68: 3087–3093.

    Article  CAS  Google Scholar 

  • Schilham MW, Moerer P, Cumano A, Clevers HC . (1997). Sox-4 facilitates thymocyte differentiation. Eur J Immunol 27: 1292–1295.

    Article  CAS  Google Scholar 

  • Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van De WM . (1996). Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 380: 711–714.

    Article  CAS  Google Scholar 

  • Shin MS, Fredrickson TN, Hartley JW, Suzuki T, Akagi K, Morse III HC . (2004). High-throughput retroviral tagging for identification of genes involved in initiation and progression of mouse splenic marginal zone lymphomas. Cancer Res 64: 4419–4427.

    Article  CAS  Google Scholar 

  • Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Lin SC . (2007). Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells. Mol Cell Biol 27: 7802–7815.

    Article  CAS  Google Scholar 

  • Suzuki T, Shen H, Akagi K, Morse HC, Malley JD, Naiman DQ . (2002). New genes involved in cancer identified by retroviral tagging. Nat Genet 32: 166–174.

    Article  CAS  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD . (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    Article  CAS  Google Scholar 

  • van de Wetering M, Oosterwegel M, van NK, Clevers H . (1993). Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12: 3847–3854.

    Article  CAS  Google Scholar 

  • van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O . (2010). Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115: 965–974.

    Article  CAS  Google Scholar 

  • Wilson ME, Yang KY, Kalousova A, Lau J, Kosaka Y, Lynn FC . (2005). The HMG box transcription factor Sox4 contributes to the development of the endocrine pancreas. Diabetes 54: 3402–3409.

    Article  CAS  Google Scholar 

  • Ziegler EC, Ghosh S . (2005). Regulating inducible transcription through controlled localization. Sci STKE 2005: 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Coffer.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beekman, J., Vervoort, S., Dekkers, F. et al. Syntenin-mediated regulation of Sox4 proteasomal degradation modulates transcriptional output. Oncogene 31, 2668–2679 (2012). https://doi.org/10.1038/onc.2011.445

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.445

Keywords

This article is cited by

Search

Quick links