Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Complex cellular functions of the von Hippel–Lindau tumor suppressor gene: insights from model organisms

Abstract

The von Hippel–Lindau tumor suppressor gene (VHL) has attracted intensive interest not only because its mutations predispose carriers to devastating tumors, but also because it is involved in oxygen sensing under physiological conditions. VHL loss-of-function mutations result in organ-specific tumors, such as hemangioblastoma of the central nervous system and renal cell carcinoma, both untreatable with conventional chemotherapies. The VHL protein is best known as an E3 ubiquitin ligase that targets hypoxia-inducible factor-α (HIF-α), but many diverse, non-canonical cellular functions have also been assigned to VHL, mainly based on studies in cell culture systems. As such, although the HIF-dependent role of VHL is critical, the full spectrum of pathophysiological functions of VHL is still unresolved. Such understanding requires careful cross-referencing with physiologically relevant experimental models. Studies in model systems, such as Caenorhabditis elegans, Drosophila, zebrafish and mouse have provided critical in vivo confirmation of the VHL–HIF pathway, and verification of potentially important cellular functions including microtubule stabilization and epithelial morphogenesis. More recently, animal models have also suggested systemic roles of VHL in hematopoiesis, metabolic homeostasis and inflammation. In this review, the studies performed in model organisms will be summarized and placed in context with existing clinical and in vitro data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adryan B, Decker HJ, Papas TS, Hsu T . (2000). Tracheal development and the von Hippel-Lindau tumor suppressor homolog in Drosophila. Oncogene 19: 2803–2811.

    CAS  PubMed  Google Scholar 

  • Akis N, Madaio MP . (2004). Isolation, culture, and characterization of endothelial cells from mouse glomeruli. Kidney Int 65: 2223–2227.

    CAS  PubMed  Google Scholar 

  • Alexander A, Walker CL . (2011). The role of LKB1 and AMPK in cellular responses to stress and damage. FEBS Lett 585: 952–957.

    CAS  PubMed  Google Scholar 

  • Arquier N, Vigne P, Duplan E, Hsu T, Therond PP, Frelin C et al. (2006). Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. Biochem J 393: 471–480.

    CAS  PubMed  Google Scholar 

  • Aso T, Yamazaki K, Aigaki T, Kitajima S . (2000). Drosophila von Hippel-Lindau tumor suppressor complex possesses E3 ubiquitin ligase activity. Biochem Biophys Res Commun 276: 355–361.

    CAS  PubMed  Google Scholar 

  • Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D et al. (2006). Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 66: 2000–2011.

    CAS  PubMed  Google Scholar 

  • Bartolini F, Gundersen GG . (2006). Generation of noncentrosomal microtubule arrays. J Cell Sci 119: 4155–4163.

    CAS  PubMed  Google Scholar 

  • Behr M, Wingen C, Wolf C, Schuh R, Hoch M . (2007). Wurst is essential for airway clearance and respiratory-tube size control. Nat Cell Biol 9: 847–853.

    CAS  PubMed  Google Scholar 

  • Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J . (2003). HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J 22: 4082–4090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betschinger J, Eisenhaber F, Knoblich JA . (2005). Phosphorylation-induced autoinhibition regulates the cytoskeletal protein Lethal (2) giant larvae. Curr Biol 15: 276–282.

    CAS  PubMed  Google Scholar 

  • Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH . (2004). Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell Biol 24: 9038–9047.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bilder D, Schober M, Perrimon N . (2003). Integrated activity of PDZ protein complexes regulates epithelial polarity. Nat Cell Biol 5: 53–58.

    CAS  PubMed  Google Scholar 

  • Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O'Rourke D et al. (2004). Genetic analysis of pathways regulated by the von Hippel-Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2: e289.

    PubMed  PubMed Central  Google Scholar 

  • Brauch H, Kishida T, Glavac D, Chen F, Pausch F, Hofler H et al. (1995). Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet 95: 551–556.

    CAS  PubMed  Google Scholar 

  • Brukamp K, Jim B, Moeller MJ, Haase VH . (2007). Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease. Am J Physiol Renal Physiol 293: F1397–F1407.

    CAS  PubMed  Google Scholar 

  • Bushuev VI, Miasnikova GY, Sergueeva AI, Polyakova LA, Okhotin D, Gaskin PR et al. (2006). Endothelin-1, vascular endothelial growth factor and systolic pulmonary artery pressure in patients with Chuvash polycythemia. Haematologica 91: 744–749.

    CAS  PubMed  Google Scholar 

  • Centanin L, Dekanty A, Romero N, Irisarri M, Gorr TA, Wappner P . (2008). Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell 14: 547–558.

    CAS  PubMed  Google Scholar 

  • Champion KJ, Guinea M, Dammai V, Hsu T . (2008). Endothelial function of von Hippel-Lindau tumor suppressor gene: control of fibroblast growth factor receptor signaling. Cancer Res 68: 4649–4657.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho D, Signoretti S, Regan M, Mier JW, Atkins MB . (2007). The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 13: 758s–7763s.

    CAS  PubMed  Google Scholar 

  • Clark PE . (2009). The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int 76: 939–945.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A . (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30: 1073–1081.

    CAS  PubMed  Google Scholar 

  • Dammai V, Adryan B, Lavenburg KR, Hsu T . (2003). Drosophila awd, the homolog of human nm23, regulates FGF receptor levels and functions synergistically with shi/dynamin during tracheal development. Genes Dev 17: 2812–2824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Danilin S, Sourbier C, Thomas L, Rothhut S, Lindner V, Helwig JJ et al. (2009). von Hippel-Lindau tumor suppressor gene-dependent mRNA stabilization of the survival factor parathyroid hormone-related protein in human renal cell carcinoma by the RNA-binding protein HuR. Carcinogenesis 30: 387–396.

    CAS  PubMed  Google Scholar 

  • Datta K, Mondal S, Sinha S, Li J, Wang E, Knebelmann B et al. (2005). Role of elongin-binding domain of von Hippel Lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma. Oncogene 24: 7850–7858.

    CAS  PubMed  Google Scholar 

  • Doronkin S, Djagaeva I, Nagle ME, Reiter LT, Seagroves TN . (2010). Dose-dependent modulation of HIF-1alpha/sima controls the rate of cell migration and invasion in Drosophila ovary border cells. Oncogene 29: 1123–1134.

    CAS  PubMed  Google Scholar 

  • Duchek P, Somogyi K, Jekely G, Beccari S, Rorth P . (2001). Guidance of cell migration by the Drosophila PDGF/VEGF receptor. Cell 107: 17–26.

    CAS  PubMed  Google Scholar 

  • Duchi S, Fagnocchi L, Cavaliere V, Hsouna A, Gargiulo G, Hsu T . (2010). Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development 137: 1493–1503.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    CAS  PubMed  Google Scholar 

  • Esteban MA, Harten SK, Tran MG, Maxwell PH . (2006). Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 17: 1801–1806.

    CAS  PubMed  Google Scholar 

  • Feijoo-Cuaresma M, Mendez F, Maqueda A, Esteban MA, Naranjo-Suarez S, Castellanos MC et al. (2008). Inadequate activation of the GTPase RhoA contributes to the lack of fibronectin matrix assembly in von Hippel-Lindau protein-defective renal cancer cells. J Biol Chem 283: 24982–24990.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frew IJ, Krek W . (2007). Multitasking by pVHL in tumour suppression. Curr Opin Cell Biol 19: 685–690.

    CAS  PubMed  Google Scholar 

  • Frew IJ, Krek W . (2008). pVHL: a multipurpose adaptor protein. Sci Signal 1: pe30.

    PubMed  Google Scholar 

  • Frew IJ, Minola A, Georgiev S, Hitz M, Moch H, Richard S et al. (2008a). Combined VHLH and PTEN mutation causes genital tract cystadenoma and squamous metaplasia. Mol Cell Biol 28: 4536–4548.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frew IJ, Thoma CR, Georgiev S, Minola A, Hitz M, Montani M et al. (2008b). pVHL and PTEN tumour suppressor proteins cooperatively suppress kidney cyst formation. EMBO J 27: 1747–1757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Naglich JG, Laidlaw J, Whaley JM, Seizinger BR, Kley N . (1995). Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene. Cancer Res 55: 743–747.

    CAS  PubMed  Google Scholar 

  • Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA . (2003). Branching morphogenesis of the Drosophila tracheal system. Annu Rev Cell Dev Biol 19: 623–647.

    CAS  PubMed  Google Scholar 

  • Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A et al. (1997). Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci USA 94: 9102–9107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordeuk VR, Sergueeva AI, Miasnikova GY, Okhotin D, Voloshin Y, Choyke PL et al. (2004). Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 103: 3924–3932.

    CAS  PubMed  Google Scholar 

  • Grivennikov SI, Greten FR, Karin M . (2010). Immunity, inflammation, and cancer. Cell 140: 883–899.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Schoell MC, Freeman RS . (2009). The von Hippel-Lindau protein sensitizes renal carcinoma cells to apoptotic stimuli through stabilization of BIM(EL). Oncogene 28: 1864–1874.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haase VH, Glickman JN, Socolovsky M, Jaenisch R . (2001). Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. Proc Natl Acad Sci USA 98: 1583–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harten SK, Shukla D, Barod R, Hergovich A, Balda MS, Matter K et al. (2009). Regulation of renal epithelial tight junctions by the von Hippel-Lindau tumor suppressor gene involves occludin and claudin 1 and is independent of E-cadherin. Mol Biol Cell 20: 1089–1101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . (2003). Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5: 64–70.

    CAS  PubMed  Google Scholar 

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S et al. (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA 91: 9700–9704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey MM, Richardson T, Wang T, Mosqueira M, Arguiri E, Yu H et al. (2010). The von Hippel-Lindau Chuvash mutation promotes pulmonary hypertension and fibrosis in mice. J Clin Invest 120: 827–839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B et al. (2007). Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117: 3810–3820.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hong SB, Furihata M, Baba M, Zbar B, Schmidt LS . (2006). Vascular defects and liver damage by the acute inactivation of the VHL gene during mouse embryogenesis. Lab Invest 86: 664–675.

    CAS  PubMed  Google Scholar 

  • Hsouna A, Nallamothu G, Kose N, Guinea M, Dammai V, Hsu T . (2010). Drosophila von Hippel-Lindau tumor suppressor gene function in epithelial tubule morphogenesis. Mol Cell Biol 30: 3779–3794.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu T, Adereth Y, Kose N, Dammai V . (2006). Endocytic function of von Hippel-Lindau tumor suppressor protein regulates surface localization of fibroblast growth factor receptor 1 and cell motility. J Biol Chem 281: 12069–12080.

    CAS  PubMed  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC . (2003). Radical causes of cancer. Nat Rev Cancer 3: 276–285.

    CAS  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.

    CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    CAS  PubMed  Google Scholar 

  • Jarecki J, Johnson E, Krasnow MA . (1999). Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell 99: 211–220.

    CAS  PubMed  Google Scholar 

  • Kaelin WG . (2005). The von Hippel-Lindau tumor suppressor protein: roles in cancer and oxygen sensing. Cold Spring Harb Symp Quant Biol 70: 159–166.

    CAS  PubMed  Google Scholar 

  • Kaelin Jr WG . (2009). Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer 115: 2262–2272.

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ, Iliopoulos O et al. (1999). Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284: 657–661.

    CAS  PubMed  Google Scholar 

  • Kapitsinou PP, Haase VH . (2008). The VHL tumor suppressor and HIF: insights from genetic studies in mice. Cell Death Differ 15: 650–659.

    CAS  PubMed  Google Scholar 

  • Kessler PM, Vasavada SP, Rackley RR, Stackhouse T, Duh FM, Latif F et al. (1995). Expression of the Von Hippel-Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol Med 1: 457–466.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim WY, Kaelin WG . (2004). Role of VHL gene mutation in human cancer. J Clin Oncol 22: 4991–5004.

    CAS  PubMed  Google Scholar 

  • Kimura K, Iwano M, Higgins DF, Yamaguchi Y, Nakatani K, Harada K et al. (2008). Stable expression of HIF-1alpha in tubular epithelial cells promotes interstitial fibrosis. Am J Physiol Renal Physiol 295: F1023–F1029.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kraus S, Arber N . (2009). Inflammation and colorectal cancer. Curr Opin Pharmacol 9: 405–410.

    CAS  PubMed  Google Scholar 

  • Kurban G, Duplan E, Ramlal N, Hudon V, Sado Y, Ninomiya Y et al. (2008). Collagen matrix assembly is driven by the interaction of von Hippel-Lindau tumor suppressor protein with hydroxylated collagen IV alpha 2. Oncogene 27: 1004–1012.

    CAS  PubMed  Google Scholar 

  • Latif F, Tory K, Gnarra J, Yao M, Duh FM, Orcutt ML et al. (1993). Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: 1317–1320.

    CAS  PubMed  Google Scholar 

  • Lisztwan J, Imbert G, Wirbelauer C, Gstaiger M, Krek W . (1999). The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 13: 1822–1833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW et al. (1998). Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 18: 732–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. (2003). von Hippel-Lindau disease. Lancet 361: 2059–2067.

    CAS  PubMed  Google Scholar 

  • Ma W, Tessarollo L, Hong SB, Baba M, Southon E, Back TC et al. (2003). Hepatic vascular tumors, angiectasis in multiple organs, and impaired spermatogenesis in mice with conditional inactivation of the VHL gene. Cancer Res 63: 5320–5328.

    CAS  PubMed  Google Scholar 

  • Ma XM, Blenis J . (2009). Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10: 307–318.

    PubMed  Google Scholar 

  • Maher ER, Neumann HP, Richard S . (2011). von Hippel-Lindau disease: a clinical and scientific review. Eur J Hum Genet 19: 617–623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandriota SJ, Turner KJ, Davies DR, Murray PG, Morgan NV, Sowter HM et al. (2002). HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron. Cancer Cell 1: 459–468.

    CAS  PubMed  Google Scholar 

  • McDonald JA, Pinheiro EM, Montell DJ . (2003). PVF1, a PDGF/VEGF homolog, is sufficient to guide border cells and interacts genetically with Taiman. Development 130: 3469–3478.

    CAS  PubMed  Google Scholar 

  • Mikhaylova O, Ignacak ML, Barankiewicz TJ, Harbaugh SV, Yi Y, Maxwell PH et al. (2008). The von Hippel-Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol Cell Biol 28: 2701–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montell DJ . (2003). Border-cell migration: the race is on. Nat Rev Mol Cell Biol 4: 13–24.

    CAS  PubMed  Google Scholar 

  • Mortimer NT, Moberg KH . (2009). Regulation of Drosophila embryonic tracheogenesis by dVHL and hypoxia. Dev Biol 329: 294–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller RU, Fabretti F, Zank S, Burst V, Benzing T, Schermer B . (2009). The von Hippel Lindau tumor suppressor limits longevity. J Am Soc Nephrol 20: 2513–2517.

    PubMed  PubMed Central  Google Scholar 

  • Nallamothu G, Dammai V, Hsu T . (2009). Developmental function of Nm23/awd: a mediator of endocytosis. Mol Cell Biochem 329: 35–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nallamothu G, Woolworth JA, Dammai V, Hsu T . (2008). Awd, the homolog of metastasis suppressor gene Nm23, regulates Drosophila epithelial cell invasion. Mol Cell Biol 28: 1964–1973.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohh M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN et al. (1998). The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1: 959–968.

    CAS  PubMed  Google Scholar 

  • Park DM, Zhuang Z, Chen L, Szerlip N, Maric I, Li J et al. (2007). von Hippel-Lindau disease-associated hemangioblastomas are derived from embryologic multipotent cells. PLoS Med 4: e60.

    PubMed  PubMed Central  Google Scholar 

  • Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM et al. (1997). The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA 94: 2156–2161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pfander D, Kobayashi T, Knight MC, Zelzer E, Chan DA, Olsen BR et al. (2004). Deletion of Vhlh in chondrocytes reduces cell proliferation and increases matrix deposition during growth plate development. Development 131: 2497–2508.

    CAS  PubMed  Google Scholar 

  • Rankin EB, Tomaszewski JE, Haase VH . (2006). Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66: 2576–2583.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rorth P . (2002). Initiating and guiding migration: lessons from border cells. Trends Cell Biol 12: 325–331.

    CAS  PubMed  Google Scholar 

  • Schermer B, Ghenoiu C, Bartram M, Muller RU, Kotsis F, Hohne M et al. (2006). The von Hippel-Lindau tumor suppressor protein controls ciliogenesis by orienting microtubule growth. J Cell Biol 175: 547–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen C, Nettleton D, Jiang M, Kim SK, Powell-Coffman JA . (2005). Roles of the HIF-1 hypoxia-inducible factor during hypoxia response in Caenorhabditis elegans. J Biol Chem 280: 20580–20588.

    CAS  PubMed  Google Scholar 

  • Shen HC, Adem A, Ylaya K, Wilson A, He M, Lorang D et al. (2009). Deciphering von Hippel-Lindau (VHL/Vhl)-associated pancreatic manifestations by inactivating Vhl in specific pancreatic cell populations. PLoS One 4: e4897.

    PubMed  PubMed Central  Google Scholar 

  • Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM, Leedham DL et al. (2006). Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med 3: e290.

    PubMed  PubMed Central  Google Scholar 

  • Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . (2003). Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425: 307–311.

    CAS  PubMed  Google Scholar 

  • Stebbins CE, Kaelin Jr WG, Pavletich NP . (1999). Structure of the VHL-ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284: 455–461.

    CAS  PubMed  Google Scholar 

  • Stenmark KR, Fagan KA, Frid MG . (2006). Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99: 675–691.

    CAS  PubMed  Google Scholar 

  • Suzuki A, Ohno S . (2006). The PAR-aPKC system: lessons in polarity. J Cell Sci 119: 979–987.

    CAS  PubMed  Google Scholar 

  • Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y et al. (2010). Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 7: 391–402.

    CAS  PubMed  Google Scholar 

  • Tang N, Mack F, Haase VH, Simon MC, Johnson RS . (2006). pVHL function is essential for endothelial extracellular matrix deposition. Mol Cell Biol 26: 2519–2530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thoma CR, Frew IJ, Hoerner CR, Montani M, Moch H, Krek W . (2007). pVHL and GSK3beta are components of a primary cilium-maintenance signalling network. Nat Cell Biol 9: 588–595.

    CAS  PubMed  Google Scholar 

  • Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P et al. (2009). VHL loss causes spindle misorientation and chromosome instability. Nat Cell Biol 11: 994–1001.

    CAS  PubMed  Google Scholar 

  • Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12: 122–127.

    CAS  PubMed  Google Scholar 

  • Tsarouhas V, Senti KA, Jayaram SA, Tiklova K, Hemphala J, Adler J et al. (2007). Sequential pulses of apical epithelial secretion and endocytosis drive airway maturation in Drosophila. Dev Cell 13: 214–225.

    CAS  PubMed  Google Scholar 

  • Uv A, Cantera R, Samakovlis C . (2003). Drosophila tracheal morphogenesis: intricate cellular solutions to basic plumbing problems. Trends Cell Biol 13: 301–309.

    CAS  PubMed  Google Scholar 

  • van der Velden YU, Wang L, Zevenhoven J, van Rooijen E, van Lohuizen M, Giles RH et al. (2011). The serine-threonine kinase LKB1 is essential for survival under energetic stress in zebrafish. Proc Natl Acad Sci USA 108: 4358–4363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Rooijen E, Voest EE, Logister I, Bussmann J, Korving J, van Eeden FJ et al. (2010). von Hippel-Lindau tumor suppressor mutants faithfully model pathological hypoxia-driven angiogenesis and vascular retinopathies in zebrafish. Dis Model Mech 3: 343–353.

    CAS  PubMed  Google Scholar 

  • van Rooijen E, Voest EE, Logister I, Korving J, Schwerte T, Schulte-Merker S et al. (2009). Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia. Blood 113: 6449–6460.

    CAS  PubMed  Google Scholar 

  • Vortmeyer AO, Gnarra JR, Emmert-Buck MR, Katz D, Linehan WM, Oldfield EH et al. (1997). von Hippel-Lindau gene deletion detected in the stromal cell component of a cerebellar hemangioblastoma associated with von Hippel-Lindau disease. Hum Pathol 28: 540–543.

    CAS  PubMed  Google Scholar 

  • Wang Y, Roche O, Yan MS, Finak G, Evans AJ, Metcalf JL et al. (2009). Regulation of endocytosis via the oxygen-sensing pathway. Nat Med 15: 319–324.

    CAS  PubMed  Google Scholar 

  • Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA et al. (2006). Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5: 835–844.

    CAS  PubMed  Google Scholar 

  • Wingrove JA, O'Farrell PH . (1999). Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98: 105–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodward ER, Buchberger A, Clifford SC, Hurst LD, Affara NA, Maher ER . (2000). Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 65: 253–265.

    CAS  PubMed  Google Scholar 

  • Woolworth JA, Nallamothu G, Hsu T . (2009). The Drosophila metastasis suppressor gene Nm23 homolog, awd, regulates epithelial integrity during oogenesis. Mol Cell Biol 29: 4679–4690.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamanaka T, Horikoshi Y, Sugiyama Y, Ishiyama C, Suzuki A, Hirose T et al. (2003). Mammalian Lgl forms a protein complex with PAR-6 and aPKC independently of PAR-3 to regulate epithelial cell polarity. Curr Biol 13: 734–743.

    CAS  PubMed  Google Scholar 

  • Yang H, Minamishima YA, Yan Q, Schlisio S, Ebert BL, Zhang X et al. (2007). pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-kappaB agonist Card9 by CK2. Mol Cell 28: 15–27.

    PubMed  PubMed Central  Google Scholar 

  • Yaqoob N, Schwerte T . (2010). Cardiovascular and respiratory developmental plasticity under oxygen depleted environment and in genetically hypoxic zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 156: 475–484.

    PubMed  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA, Zhang Q, Li L, Grisanzio C et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10: 361–369.

    CAS  PubMed  Google Scholar 

  • Zehetner J, Danzer C, Collins S, Eckhardt K, Gerber PA, Ballschmieter P et al. (2008). PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Genes Dev 22: 3135–3146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zlotogora J . (1994). High frequencies of human genetic diseases: founder effect with genetic drift or selection? Am J Med Genet 49: 10–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Cancer Institute (USA) grant (RO1CA109860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Hsu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T. Complex cellular functions of the von Hippel–Lindau tumor suppressor gene: insights from model organisms. Oncogene 31, 2247–2257 (2012). https://doi.org/10.1038/onc.2011.442

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.442

Keywords

This article is cited by

Search

Quick links