Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs

Abstract

The phosphatidylinositol 3-kinase (PI3K) pathway is commonly activated in breast cancers due to frequent mutations in PIK3CA, loss of expression of PTEN or over-expression of receptor tyrosine kinases. PI3K pathway activation leads to stimulation of the key growth and proliferation regulatory kinase mammalian target of rapamycin (mTOR), which can be inhibited by rapamycin analogues and by kinase inhibitors; the effectiveness of these drugs in breast cancer treatment is currently being tested in clinical trials. To identify the molecular determinants of response to inhibitors that target mTOR via different mechanisms in breast cancer cells, we investigated the effects of pharmacological inhibition of mTOR using the allosteric mTORC1 inhibitor everolimus and the active-site mTORC1/mTORC2 kinase inhibitor PP242 on a panel of 31 breast cancer cell lines. We demonstrate here that breast cancer cells harbouring PIK3CA mutations are selectively sensitive to mTOR allosteric and kinase inhibitors. However, cells with PTEN loss of function are not sensitive to these drugs, suggesting that the functional consequences of these two mechanisms of activation of the mTOR pathway are quite distinct. In addition, a subset of HER2-amplified cell lines showed increased sensitivity to PP242, but not to everolimus, irrespective of the PIK3CA/PTEN status. These selective sensitivities were confirmed in more physiologically relevant three-dimensional cell culture models. Our findings provide a rationale to guide selection of breast cancer patients who may benefit from mTOR inhibitor therapy and highlight the importance of accurately assessing the expression of PTEN protein and not just its mutational status.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adelaide J, Finetti P, Bekhouche I, Repellini L, Geneix J, Sircoulomb F et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Res 67: 11565–11575.

    Article  CAS  PubMed  Google Scholar 

  • American Type Culture Collection Standards Development Organization Workgroup ASN-000 (2010). Cell line misidentification: the beginning of the end. Nat Rev Cancer 10: 441–448.

    Article  Google Scholar 

  • Atkins MB, Yasothan U, Kirkpatrick P . (2009). Everolimus. Nat Rev Drug Discov 8: 535–536.

    Article  CAS  PubMed  Google Scholar 

  • Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S et al. (2004). The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther 3: 772–775.

    Article  CAS  PubMed  Google Scholar 

  • Brachmann SM, Hofmann I, Schnell C, Fritsch C, Wee S, Lane H et al. (2009). Specific apoptosis induction by the dual PI3K/mTor inhibitor NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells. Proc Natl Acad Sci USA 106: 22299–22304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown EJ, Albers MW, Shin TB, Ichikawa K, Keith CT, Lane WS et al. (1994). A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369: 756–758.

    Article  CAS  PubMed  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J, Rojo F, Salmena L, Alimonti A et al. (2008). Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118: 3065–3074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan S, Scheulen ME, Johnston S, Mross K, Cardoso F, Dittrich C et al. (2005). Phase II study of temsirolimus (CCI-779), a novel inhibitor of mTOR, in heavily pretreated patients with locally advanced or metastatic breast cancer. J Clin Oncol 23: 5314–5322.

    Article  CAS  PubMed  Google Scholar 

  • Cobleigh MA, Langmuir VK, Sledge GW, Miller KD, Haney L, Novotny WF et al. (2003). A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30: 117–124.

    Article  CAS  PubMed  Google Scholar 

  • Crowder RJ, Phommaly C, Tao Y, Hoog J, Luo J, Perou CM et al. (2009). PIK3CA and PIK3CB inhibition produce synthetic lethality when combined with estrogen deprivation in estrogen receptor-positive breast cancer. Cancer Res 69: 3955–3962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dan S, Okamura M, Seki M, Yamazaki K, Sugita H, Okui M et al. (2010). Correlating phosphatidylinositol 3-kinase inhibitor efficacy with signaling pathway status: in silico and biological evaluations. Cancer Res 70: 4982–4994.

    Article  CAS  PubMed  Google Scholar 

  • Dancey J . (2010). mTOR signaling and drug development in cancer. Nat Rev Clin Oncol 7: 209–219.

    Article  CAS  PubMed  Google Scholar 

  • Del Bufalo D, Ciuffreda L, Trisciuoglio D, Desideri M, Cognetti F, Zupi G et al. (2006). Antiangiogenic potential of the Mammalian target of rapamycin inhibitor temsirolimus. Cancer Res 66: 5549–5554.

    Article  CAS  PubMed  Google Scholar 

  • Di Nicolantonio F, Arena S, Tabernero J, Grosso S, Molinari F, Macarulla T et al. (2010). Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 120: 2858–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464: 999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efeyan A, Sabatini DM . (2010). mTOR and cancer: many loops in one pathway. Curr Opin Cell Biol 22: 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Ellard SL, Clemons M, Gelmon KA, Norris B, Kennecke H, Chia S et al. (2009). Randomized phase II study comparing two schedules of everolimus in patients with recurrent/metastatic breast cancer: NCIC Clinical Trials Group IND.163. J Clin Oncol 27: 4536–4541.

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA . (2009). Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550–562.

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA, Luo J, Cantley LC . (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606–619.

    Article  CAS  PubMed  Google Scholar 

  • Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273: 18623–18632.

    Article  CAS  PubMed  Google Scholar 

  • Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D et al. (2009). Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 7: e38.

    Article  PubMed  Google Scholar 

  • Forbes SA, Bhamra G, Bamford S, Dawson E, Kok C, Clements J et al. (2008). The catalogue of somatic mutations in cancer (COSMIC). Curr Protoc Hum Genet Suppl 57: 10.11.1–10.11.26.

    Google Scholar 

  • Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M et al. (2002). Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8: 128–135.

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    CAS  PubMed  Google Scholar 

  • Gymnopoulos M, Elsliger MA, Vogt PK . (2007). Rare cancer-specific mutations in PIK3CA show gain of function. Proc Natl Acad Sci USA 104: 5569–5574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB . (2005). Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004.

    Article  CAS  PubMed  Google Scholar 

  • Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M . (2007). Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 5: 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Stern HM, Ge L, O'Brien C, Haydu L, Honchell CD et al. (2009). Genetic alterations and oncogenic pathways associated with breast cancer subtypes. Mol Cancer Res 7: 511–522.

    Article  CAS  PubMed  Google Scholar 

  • Huse JT, Brennan C, Hambardzumyan D, Wee B, Pena J, Rouhanifard SH et al. (2009). The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev 23: 1327–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA et al. (2010). Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 16: 205–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, Hong DS et al. (2011). PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitor. Mol Cancer Ther (e-pub ahead of print; doi:10.1158/1535-7163.MCT-10-0994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK et al. (2009). PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res 15: 5049–5059.

    Article  CAS  PubMed  Google Scholar 

  • Kwitkowski VE, Prowell TM, Ibrahim A, Farrell AT, Justice R, Mitchell SS et al. (2010). FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma. Oncologist 15: 428–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GY, Kenny PA, Lee EH, Bissell MJ . (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4: 359–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI et al. (2005). Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11: 2875–2878.

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Cheng H, Roberts TM, Zhao JJ . (2009). Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8: 627–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loi S, Haibe-Kains B, Majjaj S, Lallemand F, Durbecq V, Larsimont D et al. (2010). PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci USA 107: 10208–10213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallares J, Bussaglia E, Martinez-Guitarte JL, Dolcet X, Llobet D, Rue M et al. (2005). Immunohistochemical analysis of PTEN in endometrial carcinoma: a tissue microarray study with a comparison of four commercial antibodies in correlation with molecular abnormalities. Mod Pathol 18: 719–727.

    Article  CAS  PubMed  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH . (2007). The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8: 839–845.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Tenorio G, Alkhori L, Olsson B, Waltersson MA, Nordenskjold B, Rutqvist LE et al. (2007). PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13: 3577–3584.

    Article  CAS  PubMed  Google Scholar 

  • Pickl M, Ries CH . (2009). Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28: 461–468.

    Article  CAS  PubMed  Google Scholar 

  • Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP . (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465: 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roidl A, Foo P, Wong W, Mann C, Bechtold S, Berger HJ et al. (2010). The FGFR4 Y367C mutant is a dominant oncogene in MDA-MB453 breast cancer cells. Oncogene 29: 1543–1552.

    Article  CAS  PubMed  Google Scholar 

  • Saal LH, Holm K, Maurer M, Memeo L, Su T, Wang X et al. (2005). PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554–2559.

    Article  CAS  PubMed  Google Scholar 

  • Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH . (1994). RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554.

    Article  CAS  PubMed  Google Scholar 

  • Serebriiskii I, Castello-Cros R, Lamb A, Golemis EA, Cukierman E . (2008). Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol 27: 573–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M et al. (2008). NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68: 8022–8030.

    Article  CAS  PubMed  Google Scholar 

  • She QB, Chandarlapaty S, Ye Q, Lobo J, Haskell KM, Leander KR et al. (2008). Breast tumor cells with PI3K mutation or HER2 amplification are selectively addicted to Akt signaling. PLoS One 3: e3065.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M et al. (2008). An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68: 6084–6091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson GE, Chen TT, Stastny VA, Virmani AK, Spillman MA, Tonk V et al. (1998). Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier. Cancer Res 58: 3237–3242.

    CAS  PubMed  Google Scholar 

  • Torbett NE, Luna-Moran A, Knight ZA, Houk A, Moasser M, Weiss W et al. (2008). A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem J 415: 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R et al. (2010). Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29: 2013–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ et al. (2009). AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang X . (2008). Post-translational regulation of PTEN. Oncogene 27: 5454–5463.

    Article  CAS  PubMed  Google Scholar 

  • Weaver VM, Lelievre S, Lakins JN, Chrenek MA, Jones JC, Giancotti F et al. (2002). beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2: 205–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wee S, Wiederschain D, Maira SM, Loo A, Miller C, deBeaumont R et al. (2008). PTEN-deficient cancers depend on PIK3CB. Proc Natl Acad Sci USA 105: 13057–13062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Bissell MJ . (2008). Unraveling the microenvironmental influences on the normal mammary gland and breast cancer. Semin Cancer Biol 18: 311–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Lo AT, Park CC, Gray JW, Bissell MJ . (2010). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Res Treat 122: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Cukierman E . (2007). Modeling tissue morphogenesis and cancer in 3D. Cell 130: 601–610.

    Article  CAS  PubMed  Google Scholar 

  • Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, Evans RJ et al. (2007). Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res 13: 1576–1583.

    Article  CAS  PubMed  Google Scholar 

  • Yuan TL, Cantley LC . (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Yu D . (2010). PI(3)king apart PTEN's role in cancer. Clin Cancer Res 16: 4325–4330.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Miriam Molina Arcas, Ralph Fritsch, Elza de Bruin, Charles Swanton (CRUK London Research Institute) and Maryou Lambros and Jorge Reis-Filho (Breakthrough Breast Cancer Centre, London, UK) for helpful discussions, technical advice or critical reading of the manuscript, members of the LRI Equipment Park for sequencing and of the LRI FACS facility for cell-cycle analysis. We thank Morri Feldman and Kevan Shokat (UCSF) for providing PP242. This work was funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Downward.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigelt, B., Warne, P. & Downward, J. PIK3CA mutation, but not PTEN loss of function, determines the sensitivity of breast cancer cells to mTOR inhibitory drugs. Oncogene 30, 3222–3233 (2011). https://doi.org/10.1038/onc.2011.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.42

Keywords

This article is cited by

Search

Quick links