Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation

Abstract

Manganese superoxide dismutase is a nuclear encoded primary antioxidant enzyme localized exclusively in the mitochondrial matrix. Genotoxic agents, such as ultraviolet (UV) radiation, generates oxidative stress and cause mitochondrial DNA (mtDNA) damage. The mtDNA polymerase (Polγ), a major constituent of nucleoids, is responsible for the replication and repair of the mitochondrial genome. Recent studies suggest that the mitochondria contain fidelity proteins and MnSOD constitutes an integral part of the nucleoid complex. However, it is not known whether or how MnSOD participates in the mitochondrial repair processes. Using skin tissue from C57BL/6 mice exposed to UVB radiation, we demonstrate that MnSOD has a critical role in preventing mtDNA damage by protecting the function of Polγ. Quantitative–PCR analysis shows an increase in mtDNA damage after UVB exposure. Immunofluorescence and immunoblotting studies demonstrate p53 translocation to the mitochondria and interaction with Polγ after UVB exposure. The mtDNA immunoprecipitation assay with Polγ and p53 antibodies in p53+/+ and p53−/− mice demonstrates an interaction between MnSOD, p53 and Polγ. The results suggest that these proteins form a complex for the repair of UVB-associated mtDNA damage. The data also demonstrate that UVB exposure injures the mtDNA D-loop in a p53-dependent manner. Using MnSOD-deficient mice we demonstrate that UVB-induced mtDNA damage is MnSOD dependent. Exposure to UVB results in nitration and inactivation of Polγ, which is prevented by addition of the MnSOD mimetic MnIIITE-2-PyP5+. These results demonstrate for the first time that MnSOD is a fidelity protein that maintains the activity of Polγ by preventing UVB-induced nitration and inactivation of Polγ. The data also demonstrate that MnSOD has a role along with p53 to prevent mtDNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H et al. (2005). Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol γ. EMBO J 24: 3482–3492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aitken GR, Henderson JR, Chang SC, McNeil CJ, Birch-Machin MA . (2007). Direct monitoring of UV-induced free radical generation in HaCaT keratinocytes. Clin Exp Dermatol 32: 722–727.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Radi R . (2003). Peroxynitrite reactivity with amino acids and proteins. Amino Acids 25: 295–311.

    Article  CAS  PubMed  Google Scholar 

  • Bakhanashvili M, Grinberg S, Bonda E, Simon AJ, Moshitch-Moshkovitz S, Rahav G . (2008). p53 in mitochondria enhances the accuracy of DNA synthesis. Cell Death Differ 15: 1865–1874.

    Article  CAS  PubMed  Google Scholar 

  • Batinic-Haberle I, Reboucas JS, Spasojevic I . (2010a). Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13: 877–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batinic-Haberle I, Spasojevic I, Hambright P, Benov L, Crumbliss AL, Fridovich I . (1999). Relationship among redox potentials, proton dissociation constants of pyrrolic nitrogens, and in vivo and in vitro superoxide dismutating activities of manganese(III) and iron(III) water-soluble porphyrins. Inorg Chem 38: 4011–4022.

    Article  CAS  Google Scholar 

  • Batinic-Haberle IR, JS, Benov L, Spasojevic I . (2010b). Catalysis and bio-inspired systems – part 2. In: Kadish KM, Smith KM, Guilard R (eds). Handbook of Porphyrin Science. World Scientific: Singapore, pp 291–393.

    Google Scholar 

  • Berg RJ, van Kranen HJ, Rebel HG, de Vries A, van Vloten WA, Van Kreijl CF et al. (1996). Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci U S A 93: 274–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickers DR, Athar M . (2006). Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126: 2565–2575.

    Article  CAS  PubMed  Google Scholar 

  • Birch-machin MA, Tindall M, Turner R, Haldane F, Rees JL . (1998). Mitochondrial DNA deletions in human skin reflect photo- rather than chronologic aging. J Invest Dermatol 110: 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Bogenhagen DF, Pinz KG, Perez-Jannotti RM . (2001). Enzymology of mitochondrial base excision repair. Prog Nucleic Acid Res Mol Biol 68: 257–271.

    Article  CAS  PubMed  Google Scholar 

  • Bolden A, Noy GP, Weissbach A . (1977). DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem 252: 3351–3356.

    CAS  PubMed  Google Scholar 

  • Bonifacino JS, Dell'Angelica EC, Springer TA . (2001). Immunoprecipitation. Curr Protoc Mol Biol 10: 16.1--16.29.

  • Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S et al. (2007). Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 39: 776–780.

    Article  CAS  PubMed  Google Scholar 

  • Brash DE, Rudolph JA, Simon JA, Lin A, McKenna GJ, Baden HP et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88: 10124–10128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WM, George M, Wilson AC . (1979). Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Piulats E, Echave P, Herrero E, Ros J . (2000). Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J Biol Chem 275: 27393–27398.

    CAS  PubMed  Google Scholar 

  • Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF . (1999). The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II Aminoacyl-tRNA synthetases. Mol Cell Biol 19: 4039–4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XJ, Butow RA . (2005). The organization and inheritance of the mitochondrial genome. Nat Rev Genet 6: 815–825.

    Article  CAS  PubMed  Google Scholar 

  • Decraene D, Smaers K, Gan D, Mammone T, Matsui M, Maes D et al. (2004). A synthetic superoxide dismutase catalase mimetic (EUK-134) inhibits membrane-damage-induced activation of mitogen-activated protein kinase pathways and reduces p53 accumulation in ultraviolet B-exposed primary human keratinocytes. J Investig Dermatol 122: 484–491.

    Article  CAS  PubMed  Google Scholar 

  • Esworthy RS, Ho Y-S, Chu F-F . (1997). TheGpx1Gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys 340: 59–63.

    Article  CAS  PubMed  Google Scholar 

  • Ferrer-Sueta G, Batinic-Haberle I, Spasojevic I, Fridovich I, Radi R . (1999). Catalytic scavenging of peroxynitrite by isomeric Mn(III) N-methylpyridylporphyrins in the presence of reductants. Chem Res Toxicol 12: 442–449.

    Article  CAS  PubMed  Google Scholar 

  • Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN . (2003). Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell 14: 1583–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray H, Wong TW . (1992). Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem 267: 5835–5841.

    CAS  PubMed  Google Scholar 

  • Graziewicz MA, Day BJ, Copeland WC . (2002). The mitochondrial DNA polymerase as a target of oxidative damage. Nucl Acids Res 30: 2817–2824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziewicz MA, Longley MJ, Bienstock RJ, Zeviani M, Copeland WC . (2004). Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol 11: 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Hall PA, McKee PH, Menage HD, Dover R, Lane DP . (1993). High levels of p53 protein in UV-irradiated normal human skin. Oncogene 8: 203–207.

    CAS  PubMed  Google Scholar 

  • Harbottle A, Birch-Machin MA . (2006). Real-time PCR analysis of a 3895 bp mitochondrial DNA deletion in nonmelanoma skin cancer and its use as a quantitative marker for sunlight exposure in human skin. Br J Cancer 94: 1887–1893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K . (2004). Identification of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett 578: 198–202.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren A . (1985). Thioredoxin. Annu Rev Biochem 54: 237–271.

    Article  CAS  PubMed  Google Scholar 

  • Hubscher U, Kuenzle CC, Spadari S . (1979). Functional roles of DNA polymerases beta and gamma. Proc Natl Acad Sci USA 76: 2316–2320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. (1994). Tumor spectrum analysis in p53-mutant mice. Curr Biol 4: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Johnson AA, Tsai Y-C, Graves SW, Johnson KA . (2000). Human mitochondrial DNA polymerase holoenzyme: reconstitution and characterization. Biochemistry 39: 1702–1708.

    Article  CAS  PubMed  Google Scholar 

  • Kienhofer J, Haussler DJF, Ruckelshausen F, Muessig E, Weber K, Pimentel D et al. (2009). Association of mitochondrial antioxidant enzymes with mitochondrial DNA as integral nucleoid constituents. FASEB J 23: 2034–2044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovalenko OA, Santos JH . (2009). Analysis of oxidative damage by gene-specific quantitative PCR. Curr Protoc Hum Genet 62: 19.1.1–19.1.13.

  • Krishnan KJ, Harbottle A, Birch-Machin MA . (2004). The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin. J Investig Dermatol 123: 1020–1024.

    Article  CAS  PubMed  Google Scholar 

  • Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE et al. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309: 481–484.

    Article  CAS  PubMed  Google Scholar 

  • Kulawiec M, Ayyasamy V, Singh KK . (2009). p53 regulates mtDNA copy number and mitocheckpoint pathway. J Carcinog 8: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebedeva MA, Eaton JS, Shadel GS . (2009). Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. Biochim Biophys Acta 1787: 328–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legros F, Malka F, Frachon P, Lombes A, Rojo M . (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci 117: 2653–2662.

    Article  CAS  PubMed  Google Scholar 

  • Lewis W, Day BJ, Kohler JJ, Hosseini SH, Chan SSL, Green EC et al. (2006). Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase γ. Lab Invest 87: 326–335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Ho VC, Berean K, Tron VA . (1995a). Ultraviolet radiation induction of squamous cell carcinomas in p53 transgenic mice. Cancer Res 55: 2070–2074.

    CAS  PubMed  Google Scholar 

  • Li G, Ho VC, Mitchell DL, Trotter MJ, Tron VA . (1997). Differentiation-dependent p53 regulation of nucleotide excision repair in keratinocytes. Am J Pathol 150: 1457–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Huang T-T, Carlson EJ, Melov S, Ursell PC, Olson JL et al. (1995b). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11: 376–381.

    Article  CAS  PubMed  Google Scholar 

  • Lim SE, Ponamarev MV, Longley MJ, Copeland WC . (2003). Structural determinants in human DNA polymerase γaccount for mitochondrial toxicity from nucleoside analogs. J Mol Biol 329: 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Dhanwada KR, Birt DF, Hecht S, Pelling JC . (1994). Increase in p53 protein half-life in mouse keratinocytes following UV-B irradiation. Carcinogenesis 15: 1089–1092.

    Article  CAS  PubMed  Google Scholar 

  • Longley MJ, Copeland WC . (2002). Purification, separation, and identification of the human mtDNA polymerase with and without its accessory subunit. Methods Mol Biol 197: 245–257.

    CAS  PubMed  Google Scholar 

  • Longley MJ, Prasad R, Srivastava DK, Wilson SH, Copeland WC . (1998). Identification of 5′deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA 95: 12244–12248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maglio DHG, Paz ML, Ferrari A, Weill FS, Czerniczyniec A, Leoni J et al. (2005). Skin damage and mitochondrial dysfunction after acute ultraviolet B irradiation: relationship with nitric oxide production. Photodermatol Photoimmunol Photomed 21: 311–317.

    Article  Google Scholar 

  • Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS et al. (1999). Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96: 846–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P et al. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11: 577–590.

    Article  CAS  PubMed  Google Scholar 

  • Mihara M, Moll UM . (2003). Detection of mitochondrial localization of p53. Methods Mol Biol 234: 203–209.

    CAS  PubMed  Google Scholar 

  • O'Brien KM, Dirmeier R, Engle M, Poyton RO . (2004). Mitochondrial protein oxidation in yeast mutants lacking manganese-(MnSOD) or copper- and zinc-containing superoxide dismutase (CuZnSOD). J Biol Chem 279: 51817–51827.

    Article  CAS  PubMed  Google Scholar 

  • Ouhtit A, Muller HK, Davis DW, Ullrich SE, McConkey D, Ananthaswamy HN . (2000). Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. Am J Pathol 156: 201–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozden O, Park SH, Kim HS, Jiang H, Coleman MC, Spitz DR et al. (2011). Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3: 102–107.

    Article  CAS  Google Scholar 

  • Ray AJ, Turner R, Nikaido O, Rees JL, Birch-Machin MA . (2000). The spectrum of mitochondrial DNA deletions is a ubiquitous marker of ultraviolet radiation exposure in human skin. J Investig Dermatol 115: 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Renzing J, Hansen S, Lane D . (1996). Oxidative stress is involved in the UV activation of p53. J Cell Sci 109: 1105–1112.

    CAS  PubMed  Google Scholar 

  • Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF . (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucl Acids Res 37: 2539–2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart JA, Karahalil B, Hogue BA, Souza-Pinto NC, Bohr VA . (2004). Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18: 595–597: 03-0890fje.

    Article  CAS  PubMed  Google Scholar 

  • Taanman JW, Heiske M, Letellier T . (2010). Measurement of kinetic parameters of human platelet DNA polymerase gamma. Methods 51: 374–378.

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H et al. (2010). Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40: 893–904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429: 417–423.

    Article  CAS  PubMed  Google Scholar 

  • Tron VA, Trotter MJ, Tang L, Krajewska M, Reed JC, Ho VC et al. (1998). p53-regulated apoptosis is differentiation dependent in ultraviolet B-irradiated mouse keratinocytes. Am J Pathol 153: 579–585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Goethem G, Dermaut B, Lofgren A, Martin J-J, Van Broeckhoven C . (2001). Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet 28: 211–212.

    Article  CAS  PubMed  Google Scholar 

  • Van Remmen H, Salvador C, Yang H, Huang TT, Epstein CJ, Richardson A . (1999). Characterization of the antioxidant status of the heterozygous manganese superoxide dismutase knockout mouse. Arch Biochem Biophys 363: 91–97.

    Article  CAS  PubMed  Google Scholar 

  • Vaseva AV, Moll UM . (2009). The mitochondrial p53 pathway. Biochim Biophys Acta 1787: 414–420.

    Article  CAS  PubMed  Google Scholar 

  • Vermulst M, Wanagat J, Kujoth GC, Bielas JH, Rabinovitch PS, Prolla TA et al. (2008). DNA deletions and clonal mutations drive premature aging in mitochondrial mutator mice. Nat Genet 40: 392–394.

    Article  CAS  PubMed  Google Scholar 

  • Waster PK, Ollinger KM . (2009). Redox-dependent translocation of p53 to mitochondria or nucleus in human melanocytes after UVA- and UVB-induced apoptosis. J Invest Dermatol 129: 1769–1781.

    Article  PubMed  Google Scholar 

  • Weisiger RA, Fridovich I . (1973). Superoxide dismutase. Organelle specificity. J Biol Chem 248: 3582–3592.

    CAS  PubMed  Google Scholar 

  • Wu S, Wang L, Jacoby AM, Jasinski K, Kubant R, Malinski T . (2010). Ultraviolet B light-induced nitric oxide/peroxynitrite imbalance in keratinocytes—implications for apoptosis and necrosis. Photochem Photobiol 86: 389–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakes FM, Van Houten B . (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94: 514–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF . (2006). Functional human mitochondrial DNA polymerase γ forms a heterotrimer. J Biol Chem 281: 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Chaiswing L, Velez JM, Batinic-Haberle I, Colburn NH, Oberley TD et al. (2005). p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res 65: 3745–3750.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Oberley TD, Chaiswing L, Lin SM, Epstein CJ, Huang TT et al. (2002). Manganese superoxide dismutase deficiency enhances cell turnover via tumor promoter-induced alterations in AP-1 and p53-mediated pathways in a skin cancer model. Oncogene 21: 3836–3846.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Xue Y, Oberley TD, Kiningham KK, Lin S-M, Yen H-C et al. (2001). Overexpression of manganese superoxide dismutase suppresses tumor formation by modulation of activator protein-1 signaling in a Multistage Skin Carcinogenesis Model. Cancer Res 61: 6082–6088.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (RO1CA073599-11). The National Cancer Institute CA 073599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D K St Clair.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakthavatchalu, V., Dey, S., Xu, Y. et al. Manganese superoxide dismutase is a mitochondrial fidelity protein that protects Polγ against UV-induced inactivation. Oncogene 31, 2129–2139 (2012). https://doi.org/10.1038/onc.2011.407

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.407

Keywords

This article is cited by

Search

Quick links