Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer

Abstract

Androgen receptor (AR) is overexpressed in the majority of castration-resistant prostate cancers (CRPCs). Our goal was to study the effect of AR overexpression on the chromatin binding of the receptor and to identify AR target genes that may be important in the emergence of CRPC. We have established two sublines of LNCaP prostate cancer (PC) cell line, one overexpressing AR 2–3-fold and the other 4–5-fold compared with the control cells. We used chromatin immunoprecipitation (ChIP) and deep-sequencing (seq) to identify AR-binding sites (ARBSs). We found that the number of ARBSs and the AR-binding strength were positively associated with the level of AR when cells were stimulated with low concentrations of androgens. In cells overexpressing AR, the chromatin binding of the receptor took place in 100-fold lower concentration of the ligand than in control cells. We confirmed the association of AR level and chromatin binding in two PC xenografts, one containing AR gene amplification with high AR expression, and the other with low expression. By combining the ChIP-seq and expression profiling, we identified AR target genes that are upregulated in PC. Of them, the expression of ZWINT, SKP2 (S-phase kinase-associated protein 2 (p45)) and FEN1 (flap structure-specific endonuclease 1) was demonstrated to be increased in CRPC, while the expression of SNAI2 was decreased in both PC and CRPC. FEN1 protein expression was also associated with poor prognosis in prostatectomy-treated patients. Finally, the knock-down of FEN1 with small interfering RNA inhibited the growth of LNCaP cells. Our data demonstrate that the overexpression of AR sensitizes the receptor binding to chromatin, thus, explaining how AR signaling pathway is reactivated in CRPC cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ . (2004). Image Processing with ImageJ. Biophotonics Int 11: 36–42.

    Google Scholar 

  • Andriole GL, Bostwick DG, Brawley OW, Gomella LG, Marberger M, Montorsi F et al. (2010). Effect of dutasteride on the risk of prostate cancer. N Engl J Med 362: 1192–1202.

    Article  CAS  PubMed  Google Scholar 

  • Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. (2004). Molecular determinants of resistance to antiandrogen therapy. Nat Med 10: 33–39.

    Article  PubMed  Google Scholar 

  • Cleutjens KBJM, van der Korput HAGM, van Eekelen CCEM, van Rooij HCJ, Faber PW, Trapman J . (1997). An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 11: 148–161.

    Article  CAS  PubMed  Google Scholar 

  • Huggins C, Hodges CV . (2002). Studies on prostatic cancer, I: the effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate 1941. J Urol 168: 9–12.

    Article  PubMed  Google Scholar 

  • Isaacs JT . (1994). Role of androgens in prostatic cancer. Vitam Horm 49: 433–502.

    Article  CAS  PubMed  Google Scholar 

  • Jia L, Berman BP, Jariwala U, Yan X, Cogan JP, Walters A et al. (2008). Genomic androgen receptor-occupied regions with different functions, defined by histone acetylation, coregulators and transcriptional capacity. PLoS One 3: e3645.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Z, Jänne OA, Palvimo JJ . (2004). Coregulator recruitment and histone modifications in transcriptional regulation by the androgen receptor. Mol Endocrinol 11: 2633–2648.

    Article  Google Scholar 

  • Karvonen U, Kallio PJ, Jänne OA, Palvimo JJ . (1997). Interaction of androgen receptors with androgen response element in intact cells. J Biol Chem 272: 15973–15979.

    Article  CAS  PubMed  Google Scholar 

  • Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak SM et al. (2010). Variation in transcription factor binding among humans. Science 328: 232–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller A, Backes C, Al-Awadhi M, Gerasch A, Küntzer J, Kohlbacher O et al. (2008). GeneTrailExpress: a web-based pipeline for the statistical evaluation of microarray experiments. BMC Bioinformatics 9: 552.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokontis JM, Hay N, Liao S . (1998). Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27kip1 in androgen-induced cell cycle arrest. Mol Endocrinol 12: 941–953.

    Article  CAS  PubMed  Google Scholar 

  • Kops GJ, Kim Y, Weaver BA, Mao Y, McLeod I, Yates III JR et al. (2005). ZW10 links mitotic checkpoint signaling to the structural kinetochore. J Cell Biol 169: 49–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam JS, Seligson DB, Yu H, Li A, Eeva M, Pantuck AJ et al. (2006). Flap endonuclease 1 is overexpressed in prostate cancer and is associated with a high Gleason score. BJU Int 98: 445–451.

    Article  CAS  PubMed  Google Scholar 

  • Leinonen KA, Tolonen TT, Bracken H, Stenman UH, Tammela TL, Saramäki OR et al. (2010). Association of SPINK1 expression and TMPRSS2:ERG fusion with prognosis in endocrine-treated prostate cancer. Clin Cancer Res 16: 2845–2851.

    Article  CAS  PubMed  Google Scholar 

  • Lin HK, Chen Z, Wang G, Nardella C, Lee SW, Chan CH et al. (2010). Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464: 374–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YT, Chen Y, Wu G, Lee WH . (2006). Hec1 sequentially recruits Zwint-1 and ZW10 to kinetochores for faithful chromosome segregation and spindle checkpoint control. Oncogene 25: 6901–6914.

    Article  CAS  PubMed  Google Scholar 

  • Linja MJ, Savinainen KJ, Saramäki OR, Tammela TL, Vessella RL, Visakorpi T . (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  • Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W et al. (2008). FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132: 958–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massie CE, Adryan B, Barbosa-Morais NL, Lynch AG, Tran MG, Neal DE et al. (2007). New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8: 871–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massie CE, Lynch A, Ramos-Montoya A, Boren J, Stark R, Fazli L et al. (2011). The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J 30: 2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006). TRANSFAC(r) and its module TRANSCompel(r): transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110.

    Article  CAS  PubMed  Google Scholar 

  • Nakayama KI, Nakayama K . (2006). Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 6: 369–381.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen PL, Lin DI, Lei J, Fiorentino M, Mueller E, Weinstein MH et al. (2011). The impact of Skp2 overexpression on recurrence-free survival following radical prostatectomy. Urol Oncol 29: 302–308.

    Article  CAS  PubMed  Google Scholar 

  • Obuse C, Iwasaki O, Kiyomitsu T, Goshima G, Toyoda Y, Yanagida M . (2004). A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 6: 1135–1141.

    Article  CAS  PubMed  Google Scholar 

  • Reid AH, Attard G, Danila DC, Oommen NB, Olmos D, Fong PC et al. (2010). Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J Clin Oncol 28: 1489–1495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roudier MP, Corey E, True LD, Higano CS, Ott SM, Vessella RL . (2004). Histological, immunophenotypic and histomorphometric characterization of prostate cancer bone metastases. In: Keller E, Chung L (eds). The Biology of Skeletal Metastases vol. 118. Kluwer Academic Publishers: Boston, MA, USA, pp 311–339.

    Chapter  Google Scholar 

  • Schuur ER, Henderson GA, Kmetec LA, Miller JD, Lamparski HG, Henderson DR . (1996). Prostate-specific antigen expression is regulated by an upstream enhancer. J Biol Chem 271: 7043–7051.

    Article  CAS  PubMed  Google Scholar 

  • Seruga B, Ocana A, Tannock IF . (2011). Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8: 12–23.

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Yeow WS, Ertel A, Coleman I, Clegg N, Thangavel C et al. (2010). The retinoblastoma tumor suppressor controls androgen signaling and human prostate cancer progression. J Clin Invest 120: 4478–4492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr DA, Saffery R, Li Z, Simpson AE, Choo KH, Yen TJ et al. (2000). HZwint-1, a novel human kinetochore component that interacts with HZW10. J Cell Sci 113: 1939–1950.

    CAS  PubMed  Google Scholar 

  • Takayama K, Tsutsumi S, Katayama S, Okayama T, Horie-Inoue K, Ikeda K et al. (2010). Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 30: 619–630.

    Article  PubMed  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 6: 442–454.

    Article  Google Scholar 

  • Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG et al. (2003). The influence of finasteride on the development of prostate cancer. N Engl J Med 349: 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Lepikhova T, Teixido-Travesa N, Whitehead MA, Palvimo JJ, Jänne OA . (2006). Small carboxyl-terminal domain phosphatase 2 attenuates androgen-dependent transcription. EMBO J 25: 2757–2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  • Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V et al. (2009). Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324: 787–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanucci A, Waltering KK, Suikki HE, Helenius MA, Visakorpi T . (2008). Androgen regulation of the androgen receptor coregulators. BMC Cancer 8: 219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Visakorpi T, Hyytinen E, Koivisto P, Tanner M, Keinänen R, Palmberg C et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 9: 401–406.

    Article  CAS  PubMed  Google Scholar 

  • Waltering KK, Helenius MA, Sahu B, Manni V, Linja MJ, Jänne OA et al. (2009). Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Cancer Res 69: 8141–8149.

    Article  CAS  PubMed  Google Scholar 

  • Waltering KK, Porkka KP, Jalava SE, Urbanucci A, Kohonen P, Latonen L et al. (2011). Androgen regulation of microRNAs in prostate cancer. Prostate 71: 604–614.

    Article  CAS  PubMed  Google Scholar 

  • Waltregny D, Leav I, Signoretti S, Soung P, Lin D, Merk F et al. (2001). Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol 15: 765–782.

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y et al. (2011). Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474: 390–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Carroll JS, Brown M . (2005). Spatial and temporal recruitment of androgen receptor and its coactivatos involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–642.

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li W, Liu XS, Carroll JS, Jänne OA, Keeton EK et al. (2007). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27: 380–392.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. (2009). Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M et al. (2010). Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J 29: 2147–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zheng L, Dai H, Zhou M, Hua Y, Shen B . (2011). Chemical-induced cancer incidence and underlying mechanisms in Fen1 mutant mice. Oncogene 30: 1072–1081.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X et al. (2010). An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17: 443–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Dai H, Zhou M, Li M, Singh P, Qiu J et al. (2007). Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med 13: 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Jia J, David Finger L, Guo Z, Zer C, Shen B . (2010). Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res 39: 781–794.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EE . (2009). Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462: 65–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Ms Mariitta Vakkuri, Ms Päivi Martikainen and Mr Rolle Rahikainen for the skillful technical assistance. The research leading to these results has received funding from the European Union FP6, CANCURE Programme (contract number: MEST-CT-2005-020970). In addition, grant support has been received from Academy of Finland, Cancer Society of Finland, Reino Lahtikari Foundation, Sigrid Juselius Foundation, and the Medical Research Fund of Tampere University Hospital.

Author contributions: TV and AU designed the study, analyzed the data and wrote the paper. AU and BS performed experiments and edited the paper. JS, AL, HL performed the bioinformatic analyses and edited the paper. LML performed experiments and edited the paper. KKW provided the expression data and edited the paper. OAJ contributed new reagents and edited the paper. TLT provided clinical material and edited the paper. RLV provided the xenografts material and edited the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Visakorpi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbanucci, A., Sahu, B., Seppälä, J. et al. Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Oncogene 31, 2153–2163 (2012). https://doi.org/10.1038/onc.2011.401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.401

Keywords

This article is cited by

Search

Quick links