Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

von Hippel–Lindau protein promotes Skp2 destabilization on DNA damage

Abstract

Germline mutations in the von Hippel–Lindau (VHL) tumor suppressor gene cause VHL disease, a rare and autosomal-dominant genetic syndrome. Because VHL protein (pVHL) is the master regulator of hypoxia-inducible factor alpha (HIFα), the most prominent feature of VHL disease is the deregulation of HIFα proteins. However, the precise mechanism by which the loss of pVHL function contributes to tumorigenesis is not fully understood. Here, we show that pVHL destabilizes the F-box protein Skp2, a chief component of Skp, Cullin, F-box-containing complex that promotes DNA synthesis in the S phase. The β-domain of pVHL interacts with Skp2, stimulating proteasome-dependent Skp2 degradation, but the destabilization of Skp2 does not depend on the E3 ubiquitin ligase activity of pVHL. Notably, the generation of DNA damage induces Skp2 degradation, which is attenuated by the suppression of endogenous pVHL expression. One possible mechanism of pVHL-dependent Skp2 degradation entails the antagonizing of Akt-mediated Skp2 phosphorylation, which maintains Skp2 stability. Reintroduction of VHL into VHL-null renal cell carcinoma (RCC) cells decreased Skp2 levels and restored DNA damage-dependent Skp2 degradation. These results identify the tumor suppressor function of pVHL in delaying the S-phase progression to inhibit cell proliferation on DNA damage. Clinically, this report explains as to why Skp2 accumulates abnormally in RCC tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BrdU:

bromodeoxyuridine

HIF:

hypoxia-inducible factor

RCC:

renal cell carcinoma

VHL:

von Hippel–Lindau

References

  • Balasubramanian S, Kim KH, Ahmad N, Mukhtar H . (1999). Activation of telomerase and its association with G1-phase of the cell cycle during UVB-induced skin tumorigenesis in SKH-1 hairless mouse. Oncogene 18: 1297–1302.

    Article  CAS  Google Scholar 

  • Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D et al. (2006). Genetic and epigenetic analysis of von Hippel–Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 66: 2000.

    Article  CAS  Google Scholar 

  • Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M . (2004). Control of the SCF (Skp2-Cks1) ubiquitin ligase by the APC/C (Cdh1) ubiquitin ligase. Nature 428: 190–193.

    Article  CAS  Google Scholar 

  • Bloom J, Pagano M . (2003). Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13: 41–47.

    Article  CAS  Google Scholar 

  • Bruick RK, McKnight SL . (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.

    Article  CAS  Google Scholar 

  • Cohen HT . (1999). Advances in the molecular basis of renal neoplasia. Curr Opin Nephrol Hypertens 8: 325–331.

    Article  CAS  Google Scholar 

  • Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O . (2009). p27Kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res 69: 8726–8732.

    Article  CAS  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  CAS  Google Scholar 

  • Feng X, Lu X, Man X, Zhou W, Jiang LQ, Knyazev P et al. (2009). Overexpression of Csk-binding protein contributes to renal cell carcinogenesis. Oncogene 28: 3320–3331.

    Article  CAS  Google Scholar 

  • Frescas D, Pagano M . (2008). Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8: 438–449.

    Article  CAS  Google Scholar 

  • Frew IJ, Krek W . (2008). pVHL: a multipurpose adaptor protein. Sci Signal 1: pe30.

    Article  Google Scholar 

  • Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W . (2009). Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol 11: 397–408.

    Article  CAS  Google Scholar 

  • He G, Kuang J, Huang Z, Koomen J, Kobayashi R, Khokhar AR et al. (2006). Upregulation of p27 and its inhibition of CDK2/cyclin E activity following DNA damage by a novel platinum agent are dependent on the expression of p21. Br J Cancer 95: 1514–1524.

    Article  CAS  Google Scholar 

  • Hergovich A, Lisztwan J, Barry R, Ballschmieter P, Krek W . (2003). Regulation of microtubule stability by the von Hippel–Lindau tumor suppressor protein pVHL. Nat Cell Biol 5: 64–70.

    Article  CAS  Google Scholar 

  • Hershko DD . (2008). Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112: 1415–1424.

    Article  CAS  Google Scholar 

  • Ishizaki H, Yano H, Tsuneoka M, Ogasawara S, Akiba J, Nishida N et al. (2007). Overexpression of the myc target gene Mina53 in advanced renal cell carcinoma. Pathol Int 57: 672–680.

    Article  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468.

    Article  CAS  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472.

    Article  CAS  Google Scholar 

  • Kaelin Jr WG . (2002). Molecular basis of the VHL hereditary cancer syndrome. Nat Rev Cancer 2: 673–682.

    Article  CAS  Google Scholar 

  • Kawasaki T, Bilim V, Takahashi K, Tomita Y . (1999). Infrequent alteration of p53 pathway in metastatic renal cell carcinoma. Oncol Rep 6: 329–333.

    CAS  PubMed  Google Scholar 

  • Kim M, Katayose Y, Li Q, Rakkar AN, Li Z, Hwang SG et al. (1998). Recombinant adenovirus expressing Von Hippel–Lindau-mediated cell cycle arrest is associated with the induction of cyclin-dependent kinase inhibitor p27Kip1. Biochem Biophys Res Commun 253: 672–677.

    Article  CAS  Google Scholar 

  • Kim M, Yan Y, Lee K, Sgagias M, Cowan KH . (2004). Ectopic expression of von Hippel–Lindau tumor suppressor induces apoptosis in 786-O renal cell carcinoma cells and regresses tumor growth of 786-O cells in nude mouse. Biochem Biophys Res Commun 320: 945–950.

    Article  CAS  Google Scholar 

  • Kitagawa M, Lee SH, McCormick F . (2008). Skp2 suppresses p53-dependent apoptosis by inhibiting p300. Mol Cell 29: 217–231.

    Article  CAS  Google Scholar 

  • Lam JS, Leppert JT, Figlin RA, Belldegrun AS . (2005). Role of molecular markers in the diagnosis and therapy of renal cell carcinoma. Urology 66: 1–9.

    Article  Google Scholar 

  • Langner C, von Wasielewski R, Ratschek M, Rehak P, Zigeuner R . (2004). Biological significance of p27 and Skp2 expression in renal cell carcinoma. A systematic analysis of primary and metastatic tumor tissues using a tissue microarray technique. Virchows Arch 445: 631–636.

    Article  CAS  Google Scholar 

  • Leonardi E, Murgia A, Tosatto SC . (2009). Adding structural information to the von Hippel–Lindau (VHL) tumor suppressor interaction network. FEBS Lett 583: 3704–3710.

    Article  CAS  Google Scholar 

  • Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH et al. (2009). Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 11: 420–443.

    Article  CAS  Google Scholar 

  • Liu Z, Fu Q, Lv J, Wang F, Ding K . (2008). Prognostic implication of p27Kip1, Skp2 and Cks1 expression in renal cell carcinoma: a tissue microarray study. J Exp Clin Cancer Res 27: 51.

    Article  Google Scholar 

  • Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. (2003). von Hippel–Lindau disease. Lancet 361: 2059–2067.

    Article  CAS  Google Scholar 

  • Lowe SW . (1995). Cancer therapy and p53. Curr Opin Oncol 7: 547–553.

    Article  CAS  Google Scholar 

  • Maher ER . (2004). Von Hippel–Lindau disease. Curr Mol Med 4: 833–842.

    Article  CAS  Google Scholar 

  • Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R et al. (1991). von Hippel–Lindau disease: a genetic study. J Med Genet 28: 443–447.

    Article  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. (1999). The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271–275.

    Article  CAS  Google Scholar 

  • Mizutani Y, Nakanishi H, Li YN, Matsubara H, Yamamoto K, Sato N et al. (2007). Overexpression of XIAP expression in renal cell carcinoma predicts a worse prognosis. Int J Oncol 30: 919–925.

    CAS  PubMed  Google Scholar 

  • Montagnoli A, Fiore F, Eytan E, Carrano AC, Draetta GF, Hershko A et al. (1999). Ubiquitination of p27 is regulated by Cdk-dependent phosphorylation and trimeric complex formation. Genes Dev 13: 1181–1189.

    Article  CAS  Google Scholar 

  • Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S et al. (2004). Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6: 661–672.

    Article  CAS  Google Scholar 

  • Nakayama KI, Nakayama K . (2005). Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 16: 323–333.

    Article  CAS  Google Scholar 

  • Nho RS, Sheaff RJ . (2003). p27kip1 contributions to cancer. Prog Cell Cycle Res 5: 249–259.

    PubMed  Google Scholar 

  • Nyhan MJ, O'Sullivan GC, McKenna SL . (2008). Role of the VHL (von Hippel–Lindau) gene in renal cancer: a multifunctional tumor suppressor. Biochem Soc Trans 36: 472–478.

    Article  CAS  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2: 423–427.

    Article  CAS  Google Scholar 

  • Osipov V, Keating JT, Faul PN, Loda M, Datta MW . (2002). Expression of p27 and VHL in renal tumors. Appl Immunohistochem Mol Morphol 10: 344–350.

    CAS  PubMed  Google Scholar 

  • Pagano M, Tam SW, Theodoras AM, Beer-Romero P, Del Sal G, Chau V et al. (1995). Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269: 682–685.

    Article  CAS  Google Scholar 

  • Roe JS, Kim H, Lee SM, Kim ST, Cho EJ, Youn HD . (2006). p53 stabilization and transactivation by a von Hippel–Lindau protein. Mol Cell 22: 395–405.

    Article  CAS  Google Scholar 

  • Sgambato A, Cittadini A, Faraglia B, Weinstein IB . (2000). Multiple functions of p27(Kip1) and its alterations in tumor cells: a review. J Cell Physiol 183: 18–27.

    Article  CAS  Google Scholar 

  • Semenza GL . (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Dev Biol 15: 551–578.

    Article  CAS  Google Scholar 

  • Sherr CJ, Roberts JM . (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9: 1149–1163.

    Article  CAS  Google Scholar 

  • Stebbins CE, Kaelin Jr WG, Pavletich NP . (1999). Structure of the VHL–ElonginC–ElonginB complex: implications for VHL tumor suppressor function. Science 284: 455–461.

    Article  CAS  Google Scholar 

  • Vikhanskaya F, Erba E, D'Incalci M, Broggini M . (1996). Changes in cyclins and cyclin-dependent kinases induced by DNA damaging agents in a human ovarian cancer cell line expressing mutated or wild-type P53. Exp Cell Res 227: 380–385.

    Article  CAS  Google Scholar 

  • Vivo C, Lecomte C, Levy F, Leroy K, Kirova Y, Renier A et al. (2003). Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation. Br J Cancer 88: 388–395.

    Article  CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL . (1995). Hypoxia-inducible factor 1 is a basic-helix–loop–helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92: 5510–5514.

    Article  CAS  Google Scholar 

  • Wykoff CC, Sotiriou C, Cockman ME, Ratcliffe PJ, Maxwell P, Liu E et al. (2004). Gene array of VHL mutation and hypoxia shows novel hypoxia-induced genes and that cyclin D1 is a VHL target gene. Br J Cancer 90: 1235–1243.

    Article  CAS  Google Scholar 

  • Zhou H, Kato A, Yasuda H, Miyaji T, Fujigaki Y, Yamamoto T et al. (2004). The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol Appl Pharmacol 200: 111–120.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare (0720460), the Korea Healthcare Technology R&D Project (A090281), and National Research Foundation Grant (NRF-2010-0018896) to H-DY, a grant from the Korea Healthcare R&D Project (A080181) to E-JC and by the Korea Student Aid Foundation (KOSAF) grant, funded by the Korea government (MEST) (S2-2008-000-00400-1) to JSR. We thank Dr B Bruene (Johann Wolfgang Goethe-University) and Dr DS Lim (KAIST) for invaluable materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-D Youn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roe, JS., Kim, HR., Hwang, IY. et al. von Hippel–Lindau protein promotes Skp2 destabilization on DNA damage. Oncogene 30, 3127–3138 (2011). https://doi.org/10.1038/onc.2011.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.40

Keywords

This article is cited by

Search

Quick links