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The Kruppel-like factor (KLF) proteins are multitasked
transcriptional regulators with an expanding tumor suppres-
sor function. KLF2 is one of the prominent members of the
family because of its diminished expression in malignancies
and its growth-inhibitory, pro-apoptotic and anti-angiogenic
roles. In this study, we show that epigenetic silencing of
KLF2 occurs in cancer cells through direct transcriptional
repression mediated by the Polycomb group protein
Enhancer of Zeste Homolog 2 (EZH2). Binding of EZH2
to the 50-end of KLF2 is also associated with a gain of
trimethylated lysine 27 histone H3 and a depletion of
phosphorylated serine 2 of RNA polymerase. Upon depletion
of EZH2 by RNA interference, short hairpin RNA or use of
the small molecule 3-Deazaneplanocin A, the expression of
KLF2 was restored. The transfection of KLF2 in cells with
EZH2-associated silencing showed a significant anti-tumor-
al effect, both in culture and in xenografted nude mice. In
this last setting, KLF2 transfection was also associated with
decreased dissemination and lower mortality rate. In EZH2-
depleted cells, which characteristically have lower tumor-
igenicity, the induction of KLF2 depletion ‘rescued’ partially
the oncogenic phenotype, suggesting that KLF2 repression
has an important role in EZH2 oncogenesis. Most
importantly, the translation of the described results to
human primary samples demonstrated that patients with
prostate or breast tumors with low levels of KLF2 and high
expression of EZH2 had a shorter overall survival.
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The Kruppel-like factor (KLF) family of proteins, also
known as SP1-like, is made up of a set of transcription
factors that are present in a wide range of organisms, in
which they fulfill a range of cell differentiation and
proliferation functions (Black et al., 2001; Kaczynski
et al., 2003; Zhao and Meng, 2005; Bureau et al., 2009).
KLFs have Cys2/His2 zinc-finger domains that prefer-
entially bind to GC-rich target sequences, where they
can function as activators or repressors in a cell type-
and promoter-dependent manner (Black et al., 2001;
Kaczynski et al., 2003; Zhao and Meng, 2005; Bureau
et al., 2009). KLFs are also emerging as potential tumor
suppressor genes owing to their roles in the inhibition of
proliferation, migration and angiogenesis, and in the
induction of apoptosis, senescence and adhesion (Black
et al., 2001; Kaczynski et al., 2003; Zhao and Meng,
2005; Bureau et al., 2009). One member of the family,
KLF2, is particularly interesting. Although it is not
known to undergo genetic disruption in human tumors,
KLF2 expression is diminished in many malignancies,
such as prostate (Duhagon et al., 2010) and ovarian
(Wang et al., 2005) cancer. From a functional stand-
point, KLF2 possesses tumor-suppressor features such
as induction of cell quiescence (Buckley et al., 2001),
enhancement of DNA-damage-associated apoptosis
(Wang et al., 2005), inhibition of leukemia cell
proliferation (Wu and Lingrel, 2004), anti-angiogenesis
properties (Bhattacharya et al., 2005), and the suppres-
sion of cell growth mediated by KRAS (Fernandez-
Zapico et al., 2010) and epidermal growth factor
receptor (Kannan-Thulasiraman et al., 2010). Thus, we
wondered about the molecular basis of the loss-
of-function defects of KLF2 in human tumorigenesis
and so set out to study the possible role of oncogenic
repressive mechanisms.

One of the most important systems for maintaining
the heritable repression of genes is that of the Polycomb
group proteins (Ringrose and Paro, 2004; Martin
and Zhang, 2005). These Polycomb group proteins are
often de-regulated in human cancer (Pasini et al., 2004;
Valk-Lingbeek et al., 2004). The Enhancer of Zeste
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Homolog 2 (EZH2) is a component of the Polycomb
repressive complex 2, which also includes SUZ12 and
EED, and represses gene transcription by trimethylation
of Lys27 of histone H3 (H3K27) (Simon and Lange,
2008). EZH2 has the hallmarks of an oncogene,
particularly in prostate and breast cancer, where
elevated levels are found in the more advanced forms
of the disease (Varambally et al., 2002; Bracken et al.,
2003; Kleer et al., 2003). Recently, EZH2 gain-of-
function mutations have also been found in lymphomas
(Yap et al., 2011). Thus, one way by which EZH2 could
promote transformation is by repressing tumor sup-
pressor genes, exploiting its methyltransferase activity
for lysine 27 of histone H3 (H3K27) (Simon and Lange,
2008). In this scenario, several genes with a growth-
inhibitory function have recently been found to
be targeted by EZH2 in cancer cells (Chen et al., 2005;

Beke et al., 2007; Yu et al., 2007, 2010; Fujii et al., 2008).
Thus, we examined whether KLF2 could also be a key
tumor suppressor gene targeted for repression by EZH2
in human tumorigenesis.

To assess the putative role of EZH2 in KLF2
repression, we first transiently depleted the expression
of EZH2 by RNA interference (RNAi) in MDA-MB-
231 and MCF-7 (breast), PC3 and LNCaP (prostate),
and U2OS (osteosarcoma) cancer cell lines (Figures 1a
and b). All cell lines were purchased from the American
Type Culture Collection (Manassas, VA, USA) and
were cultured in Dulbecco’s modied Eagle’s medium
supplemented with 10% fetal bovine serum. The in vitro
transient transfection of short interfering RNAs
(Qiagen, Valencia, CA, USA) was performed using
Oligofectamine (Invitrogen, Carlsbad, CA, USA). We
observed that the loss of EZH2 was associated with
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Figure 1 EZH2 depletion leads to increased KLF2 mRNA and protein levels. Expression of KLF2 and EZH2 determined by
qRT–PCR (a) and (b) immunoblot in five cancer cell lines (U2OS, MDA-MB-231, MCF-7, PC3 and LNCaP cells) following
transfection with oligo-type short interfering RNA (siRNA) against EZH2 or scrambled siRNA for 72 h as a transient model.
(c) Immunoblot of EZH2 and KLF2 in stable EZH2 knockdown clones. U2OS cells are transfected with shRNA constructs targeting
EZH2 or control vector and undergo selection with puromycin. P-values obtained from Student’s t-test.
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upregulation of KLF2 at mRNA (Figure 1a) and
protein (Figure 1b) levels in all the five described cancer
cell lines. Upon EZH2 knockdown at 72 h, we also
observed a defect on cell viability determined by the 3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT) assay and an increase in G1/decrease in
S-phase assessed by fluorescence-activated cell sorting
analysis (Supplementary Figure 1). We strengthened the
link between EZH2 expression and KLF2 repression by
establishing a U2OS cell line stably transfected with a
short hairpin RNA (shRNA) against EZH2 (Figure 1c
and Supplementary Figure 2). EZH2–shRNA (Origene,
Rockville, MD, USA) transfection was accomplished by
electroporation and cells were selected with puromycin
(Calbiochem, Darmstadt, Germany). The stable inhibi-
tion of EZH2 expression also led to a marked increase in

KLF2 mRNA (Supplementary Figure 2) and protein
levels (Figure 1c).

The observed inverse association between EZH2 and
KLF2 levels might be mediated by a direct effect
of EZH2 on the KLF2 promoter or by secondary
mechanisms. Thus, we performed quantitative chroma-
tin immunoprecipitation (qChIP) for the minimal
promoter of KLF2 using antibodies against EZH2, the
trimethylated H3K27 mark (3meH3K27) established
by the enzyme and phosphorylated serine 2 of RNA
polymerase (RNAP-S2, a marker of active transcrip-
tion). A nonspecific IgG antibody was used as a
technical negative control, the EZH2-target gene
ADRB2 (Yu et al., 2007) was used as a positive
control and the GAPDH locus was used as a negative
control. Measurements were made in triplicate and
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Figure 2 EZH2 direct binding to the KLF2 promoter mediates the transcriptional repression effect. (A) ChIP–qPCR of EZH2 occupancy
and H3K27-3me marks in the KLF2 promoter in five cancer cell lines treated with EZH2 siRNA (72h) or scrambled siRNA. Treatment
with siRNA against EZH2 prevents EZH2 occupancy and the presence of the H3K27-3me mark, while enhanced RNAP binding is
observed in theKLF2 promoter. ChIP was performed using polyclonal antibodies raised in rabbit against EZH2 (pAb-039-050, Diagenode,
Liège, Belgium), RNAP-S2 (ab5095, Abcam, Cambridge, UK) and H3K27me3 (pAB-069-05, Diagenode), with rabbit IgG as a control
(ab37415, Abcam, ChIP grade). The primers used for the ChIP–qPCR analysis of the KLF2 promoter were 50-GAGACTCCAGACT
TCCCATCC-30 (sense) and 50-CAGAGACTCTCAGGGGAGCAC-30 (antisense). (B) qChIP for EZH2 occupancy and H3K27-3me
presence for the KLF2 promoter in stable EZH2 knockdown clones (U2OS-shEZH2). (C) KLF2 promoter activities are analyzed by
luciferase reporter assay in stable EZH2 knockdown clones. In each experiment, firefly luciferase activities are normalized against those of
Renilla. n¼ 3, mean±s.e.m. (error bars). We used a pGL3 Luciferase Reporter Vector (Promega, Madison, WI, USA) for the KLF2
promoter encompassing NheI/Hind III sites (from �916 to þ 129bp). (D) Upregulation of KLF2 transcript (a) and protein (b) upon
treatment with 5mM DZNep for 72h. (c) qChIP analysis shows how the treatment with DZNep decreased EZH2 occupancy and the
H3K27-3me mark in the KLF2 promoter, while it enhanced RNAP-S2 occupancy. P-values obtained from Student’s t-test.
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the polymerase chain reactions (PCRs) were done using
the Prism 7900 HT Sequence Detection System (Applied
Biosystems, Carlsbad, CA, USA). The qChIP analyses
demonstrated an enriched presence of EZH2 and
3meH3K27 in the KLF2 promoter for the described
cancer cell lines (Figure 2A). Conversely, RNAP-S2 was
depleted at this locus (Figure 2A). The EZH2 RNAi
experiments reduced EZH2 occupancy and 3meH3K27
presence and induced the recruitment of RNAP-S2 for
the KLF2 promoter (Figure 2A). These results for the
50-end of the KLF2 gene were similar to those obtained
from the qChIP data of the well-known EZH2-target
gene ADRB2 (Yu et al., 2007) (Supplementary Figure 3).
The U2OS cells that were stably depleted at EZH2 by

shRNA reproduced this qChIP pattern (Figure 2B).
In these cells, evidence for the role of EZH2 in directly
repressing KLF2 was reinforced by the results
of luciferase assays (Figure 2C). Finally, the link
between EZH2 binding to the 50-end of the KLF2 and
its corresponding silencing was corroborated by the use
of the small molecule 3-Deazaneplanocin A (DZNep),
which depletes the cellular levels of Polycomb-repressive
complex 2 components, including EZH2 (Tan et al.,
2007). Upon DZNep treatment, a marked increase
in KLF2 expression was observed in U2OS cells
(Figure 2D). The DZNep-mediated enhancement
of KLF2 expression was associated with the depletion
of EZH2 occupancy and 3meH3K27 levels and an
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Figure 3 KLF2 induces apoptosis, directly activates the cell cycle-inhibiting genes p15/CDKN2B and p21/CDKN1A and inhibits cell
proliferation. (A) Enhanced Annexin V expression relative to empty vector-transfected cells upon KLF2 transfection. The right panels
are the original red color/FL-4 (annexin-Cy5) histograms that show how KFL2 transfection induces apoptosis, demonstrated by the
increase in the number of cells that incorporate higher amounts of annexin V. (B) U2OS cells transfected with a FLAG-tagged KLF2
(pCMV-Tag2B-KLF2) expression vector show increased expression of p15Ink4b and p21CDKN1A, determined by qRT–PCR (a) and
western blot (b). (C) The ectopically expressed KLF2 (FLAG-tagged KLF2) occupied the p15Ink4b and p21CDKN1A promoters in
association with a gain of RNAP-S2 occupancy and the H3-K4 trimethylation mark determined by qChIP. (D) MTT (left) and colony
formation (right) assays reveal that stable KLF2-expressing U2OS cells grow more slowly than cells transfected with control vector.
(E) Enhanced proliferation of normal MRC5 fibroblasts after transfection of shRNA against KLF2 in comparison with scrambled
shRNA. P-values obtained from Student’s t-test.
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enrichment of RNAP-S2 in the KLF2 promoter
determined by qChIP (Figure 2D). From the DNA
methylation standpoint, the KLF 50-end region contains
a canonical CpG island that remained unmethylated
under all the experimental conditions described
(Supplementary Figure 4).

Once we had determined that KLF2 was a direct
target of transcriptional repression by EZH2 in cancer
cells, we sought to understand the molecular and cellular
contribution of KLF2 silencing to the transformed
phenotype. To this end we constructed a FLAG-tagged
KLF2 expression vector using the pCMV-Tag2B vector
(Stratagene, Santa Clara, CA, USA) and transfected
it by electroporation to U2OS cells. Transfected cells
were selected by adding G418 (Calbiochem). Upon

KLF2 transfection, we observed enhanced Annexin V
expression relative to empty vector-transfected cells
(Figure 3A). The pro-apoptotic effect mediated by
KLF2 transfection was also associated with an increase
in the expression levels of the cell cycle-inhibiting genes
p15/CDKN2B and p21/CDKN1A, as determined by
qRT–PCR (Figure 3B) and western blot (Figure 3B).
These two latter genes could be direct or indirect targets
of the transcription factor KLF2. The two possibilities
can be discriminated by the chromatin immunoprecipi-
tation assay. The qChIP analyses demonstrated an
enriched presence of KLF2 (using a FLAG-M2
antibody) in the 50-end CpG islands of p15/CDKN2B
and p21/CDKN1A in the transfected U2OS cells
(Figure 3C). The KLF2 occupancy at these promoters
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Figure 4 KLF2 as a tumor suppressor in mouse models and its effect on human tumors. (a) Effect of sh-EZH2 knockdown (left) or
KLF2 transfection (right) on the growth of U2OS cells inoculated into nude mice. Tumor volume was monitored over time, and the
tumor was excised and weighed after 24 days. EZH2 depletion or KLF2 overexpression cause a reduction in tumor volume and weight.
(b) Significantly lower mortality following tail-vein injection in the mice of 1� 106 U2OS cells was observed in U2OS-pCMV-KLF2 or
U2OS-shEZH2 cells in comparison with the empty vector-transfected cells (Po0.001) (c) EZH2 and KLF2 expression in clinical cancer
samples determined by immunostaining in prostate and breast cancer tissue microarrays. KLF2 expression was inversely associated
with EZH2 expression in prostate (Pearson’s correlation coefficient r2¼ 0.32, Po0.05, n¼ 40) and breast (Pearson’s correlation
coefficient r2¼ 0.57, Po0.05, n¼ 15) cancer. (d) The high expression of EZH2 associated with the low expression of KLF2 predicts
overall shorter survival in breast and prostate cancer (Kaplan–Meier analysis, P¼ 0.013 and P¼ 0.062, respectively).
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also occurred with an enrichment of active transcription
marks, such as RNAP-S2 occupancy and the trimethy-
lation of lysine 4 of histone H3 (Figure 3C).

From the point of view of cellular growth, KLF2 also
had the expected features of a tumor suppressor gene.
KLF2-transfected U2OS cells showed a marked reduc-
tion of proliferation determined by both the MTT
(Figure 3D) and colony-formation (Figure 3D) assays.
Conversely, stable depletion of KLF2 by shRNA in the
non-transformed MRC5 fibroblast cells increased cell
viability as assessed by the MTT assay (Figure 3E). We
also wished to investigate the contribution of KLF2
repression to the overall tumorigenic phenotype con-
ferred by EZH2. To do this, we first depleted EZH2 by
RNAi in U2OS cells (Supplementary Figure 5) and
observed that the induced diminished levels of EZH2
were associated with a lower level of cell proliferation,
as determined by the MTT assay (Supplementary
Figure 5). This finding was consistent with those of
previous reports (Varambally et al., 2002; Bracken et al.,
2003). As also described above, EZH2–RNAi caused
KLF2 upregulation (Supplementary Figure 5). We
proceeded to knock down KLF2 by RNAi in the
EZH2-depleted cells to investigate whether the loss of
KLF2 was able to ‘rescue’ partially the oncogenic
phenotype mediated by EZH2. We observed that the
double RNAi against EZH2 and KLF2 (EZH2-/KLF2-
cells) gave rise to cells with a higher proliferation rate
than those with single EZH2 depletion (Supplementary
Figure 5). Thus, KLF2 transcriptional silencing is an
important step in the proliferation pathways mediated
by the EZH2 oncogene.

We extended the study of the KLF2 growth-
inhibitory role to in vivo mouse models. Athymic
(nu/nu) mice, aged 4–5 weeks, were used for tumor
xenograft models. The experimental design was
approved by the Bellvitge Biomedical Research Institute
Ethical Board. The mice were killed 30 days after
injection and tumors were excised and weighed, while
the mean volume of tumors±standard error of the
mean (s.e.m.) was also calculated. The subcutaneous
injection of 3� 106 U2OS cells in nude mice demon-
strated that KLF2-transfected cells (U2OS-pCMV-
KLF2) developed significantly smaller tumors than
empty vector-transfected U2OS cells (Student’s t-test,
P¼ 0.028) (Figure 4a). The characterization of the
spreading potential was developed by tail-vein injection
in the mice of 1� 106 U2OS cells suspended in 0.2ml
phosphate-buffered saline, and the survival rate at 40
days was analyzed by the Kaplan–Meier method.
U2OS-pCMV-KLF2-transfected cells had a significantly
lower mortality rate than U2OS empty vector-trans-
fected cells (Po0.001) (Figure 4b). Depletion of EZH2

by shRNA had a similar effect in the reduction of
mortality (Figure 4b).

Finally, we decided to translate part of these findings
to the context of human primary tumors. We assessed
EZH2 and KLF2 expression by immunostaining in
clinical tumor samples using a cancer tissue microarray
that includes prostate and breast cancer tissue samples
with clinical data (SuperBioChips Laboratories, Seoul,
Korea). Supplementary Table 1 summarizes the EZH2/
KLF2 expression and clinical data from each individual
prostate (n¼ 40) and breast (n¼ 15) cancer case. We
observed that KLF2 expression was inversely associated
with EZH2 expression in prostate (Pearson’s correlation
coefficient r2¼ 0.32, Po0.05) and breast (Pearson’s
correlation coefficient r2¼ 0.57, Po0.05) tumors
(Figure 4c). Most importantly, the comparison of the
expression data against the clinicopathological values
showed that the combination of low KLF2 and high
EZH2 expression was associated with shorter overall
survival in breast and prostate cancer (Kaplan–Meier
analysis, P¼ 0.013 and 0.062, respectively) (Figure 4d).

Overall, our data indicate that KLF2 undergoes
transcriptional silencing in human tumorigenesis
by the direct repression of an oncogenic Polycomb
protein, the histone methyltransferase EZH2. The
EZH2-mediated inactivation of KLF2 blocks the
tumor-suppressor features of the KLF2 protein, such
as its pro-apoptotic and cell cycle-inhibitory capacities,
mediated by p15/CDKN2B and p21/CDKN1A, and its
growth-inhibitory features demonstrated in cellular and
animal models. Most importantly, the EZH2-mediated
loss of KLF2 predicts a poor outcome in human
malignancies.
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