Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma

Abstract

The phosphatidylinositol-3-OH kinase (PI3K)-Akt pathway is activated in cancer by genetic or epigenetic events and efforts are under way to develop targeted therapies. phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is the major brake of the pathway and a common target for inactivation in glioblastoma, one of the most aggressive and therapy-resistant cancers. To achieve potent inhibition of the PI3K-Akt pathway in glioblastoma, we need to understand its mechanism of activation by investigating the interplay between its regulators. We show here that PTEN modulates the PI3K-Akt pathway in glioblastoma within a tumor suppressor network that includes Na+/H+ exchanger regulatory factor 1 (NHERF1) and pleckstrin-homology domain leucine-rich repeat protein phosphatases 1 (PHLPP1). The NHERF1 adaptor, previously characterized by our group as a PTEN ligand and regulator, shows also PTEN-independent Akt-modulating effects that led us to identify the PHLPP1/PHLPP2 Akt phosphatases as NHERF1 ligands. NHERF1 interacts via its PDZ domains with PHLPP1/PHLPP2 and scaffolds heterotrimeric complexes with PTEN. Functionally, PHLPP1 requires NHERF1 for membrane localization and growth-suppressive effects. PHLPP1 loss boosts Akt phosphorylation only in PTEN-negative cells and cooperates with PTEN loss for tumor growth. In a panel of low-grade and high-grade glioma patient samples, we show for the first time a significant disruption of all three members of the PTEN-NHERF1-PHLPP1 tumor suppressor network in high-grade tumors, correlating with Akt activation and patient's abysmal survival. We thus propose a PTEN-NHERF1-PHLPP PI3K-Akt pathway inhibitory network that relies on molecular interactions and can undergo parallel synergistic hits in glioblastoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J . (1998). 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 8: 69–81.

    Article  CAS  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C et al. (2007). NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Res 35: D760–D765.

    Article  CAS  Google Scholar 

  • Brognard J, Newton AC . (2008). PHLiPPing the switch on Akt and protein kinase C signaling. Trends Endocrinol Metab 19: 223–230.

    Article  CAS  Google Scholar 

  • Brognard J, Sierecki E, Gao T, Newton AC . (2007). PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol Cell 25: 917–931.

    Article  CAS  Google Scholar 

  • Cardone RA, Bellizzi A, Busco G, Weinman EJ, Dell'Aquila ME, Casavola V et al. (2007). The NHERF1 PDZ2 domain regulates PKA-RhoA-p38-mediated NHE1 activation and invasion in breast tumor cells. Mol Biol Cell 18: 1768–1780.

    Article  CAS  Google Scholar 

  • Carnero A, Blanco-Aparicio C, Renner O, Link W, Leal JF . (2008). The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets 8: 187–198.

    Article  CAS  Google Scholar 

  • Courtney KD, Corcoran RB, Engelman JA . (2010). The PI3K pathway as drug target in human cancer. J Clin Oncol 28: 1075–1083.

    Article  CAS  Google Scholar 

  • Fouassier L, Yun CC, Fitz JG, Doctor RB . (2000). Evidence for ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) self-association through PDZ-PDZ interactions. J Biol Chem 275: 25039–25045.

    Article  CAS  Google Scholar 

  • Franke TF . (2008). PI3K/Akt: getting it right matters. Oncogene 27: 6473–6488.

    Article  CAS  Google Scholar 

  • Gao T, Furnari F, Newton AC . (2005). PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18: 13–24.

    Article  CAS  Google Scholar 

  • Georgescu MM . (2010). PTEN tumor suppressor network in PI3K-Akt pathway control. Genes & Cancer 1: 1170–1177.

    Article  CAS  Google Scholar 

  • Georgescu MM, Kirsch KH, Akagi T, Shishido T, Hanafusa H . (1999). The tumor-suppressor activity of PTEN is regulated by its carboxyl-terminal region. Proc Natl Acad Sci USA 96: 10182–10187.

    Article  CAS  Google Scholar 

  • Georgescu MM, Morales FC, Molina JR, Hayashi Y . (2008). Roles of NHERF1/EBP50 in cancer. Curr Mol Med 8: 459–468.

    Article  CAS  Google Scholar 

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ et al. (1998). A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 95: 8496–8501.

    Article  CAS  Google Scholar 

  • Hayashi Y, Molina JR, Hamilton SR, Georgescu MM . (2010). NHERF1/EBP50 is a new marker in colorectal cancer. Neoplasia 12: 1013–1022.

    Article  CAS  Google Scholar 

  • Kreimann EL, Morales FC, de Orbeta-Cruz J, Takahashi Y, Adams H, Liu TJ et al. (2007). Cortical stabilization of beta-catenin contributes to NHERF1/EBP50 tumor suppressor function. Oncogene 26: 5290–5299.

    Article  CAS  Google Scholar 

  • Lazar CS, Cresson CM, Lauffenburger DA, Gill GN . (2004). The Na+/H+ exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface. Mol Biol Cell 15: 5470–5480.

    Article  CAS  Google Scholar 

  • Lee JO, Yang H, Georgescu MM, Di Cristofano A, Maehama T, Shi Y et al. (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99: 323–334.

    Article  CAS  Google Scholar 

  • Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.

    Article  CAS  Google Scholar 

  • Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T . (2009). Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28: 994–1004.

    Article  CAS  Google Scholar 

  • Maehama T, Dixon JE . (1998). The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273: 13375–13378.

    Article  CAS  Google Scholar 

  • Maudsley S, Zamah AM, Rahman N, Blitzer JT, Luttrell LM, Lefkowitz RJ et al. (2000). Platelet-derived growth factor receptor association with Na(+)/H(+) exchanger regulatory factor potentiates receptor activity. Mol Cell Biol 20: 8352–8363.

    Article  CAS  Google Scholar 

  • Molina JR, Hayashi Y, Stephens C, Georgescu MM . (2010a). Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12: 453–463.

    Article  CAS  Google Scholar 

  • Molina JR, Morales FC, Hayashi Y, Aldape KD, Georgescu MM . (2010b). Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation. Cancer Res 70: 6697–6703.

    Article  CAS  Google Scholar 

  • Morales FC, Takahashi Y, Momin S, Adams H, Chen X, Georgescu MM . (2007). NHERF1/EBP50 head-to-tail intramolecular interaction masks association with PDZ domain ligands. Mol Cell Biol 27: 2527–2537.

    Article  CAS  Google Scholar 

  • Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F et al. (1998). NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273: 1273–1276.

    Article  CAS  Google Scholar 

  • Pan Y, Weinman EJ, Dai J . (2008). NHERF1 (Na+/H+ exchanger regulatory factor 1) inhibits platelet-derived growth factor signaling in breast cancer cells. Breast Cancer Res 10: R5.

    Article  Google Scholar 

  • Qiao M, Wang Y, Xu X, Lu J, Dong Y, Tao W et al. (2010). Mst1 is an interacting protein that mediates PHLPPs’ induced apoptosis. Mol Cell 38: 512–523.

    Article  CAS  Google Scholar 

  • Rahdar M, Inoue T, Meyer T, Zhang J, Vazquez F, Devreotes PN . (2009). A phosphorylation-dependent intramolecular interaction regulates the membrane association and activity of the tumor suppressor PTEN. Proc Natl Acad Sci USA 106: 480–485.

    Article  CAS  Google Scholar 

  • Reczek D, Berryman M, Bretscher A . (1997). Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 139: 169–179.

    Article  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307: 1098–1101.

    Article  CAS  Google Scholar 

  • Shenolikar S, Minkoff CM, Steplock DA, Evangelista C, Liu M, Weinman EJ . (2001). N-terminal PDZ domain is required for NHERF dimerization. FEBS Let 489: 233–236.

    Article  CAS  Google Scholar 

  • Shibata T, Chuma M, Kokubu A, Sakamoto M, Hirohashi S . (2003). EBP50, a beta-catenin-associating protein, enhances Wnt signaling and is over-expressed in hepatocellular carcinoma. Hepatology 38: 178–186.

    Article  CAS  Google Scholar 

  • Shimizu K, Okada M, Takano A, Nagai K . (1999). SCOP, a novel gene product expressed in a circadian manner in rat suprachiasmatic nucleus. FEBS Lett 458: 363–369.

    Article  CAS  Google Scholar 

  • Song J, Bai J, Yang W, Gabrielson EW, Chan DW, Zhang Z . (2007). Expression and clinicopathological significance of oestrogen-responsive ezrin-radixin-moesin-binding phosphoprotein 50 in breast cancer. Histopathology 51: 40–53.

    Article  CAS  Google Scholar 

  • Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH et al. (1997). Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362.

    Article  CAS  Google Scholar 

  • Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9: 287–300.

    Article  CAS  Google Scholar 

  • Takahashi Y, Morales FC, Kreimann EL, Georgescu MM . (2006). PTEN tumor suppressor associates with NHERF proteins to attenuate PDGF receptor signaling. EMBO J 25: 910–920.

    Article  CAS  Google Scholar 

  • Walker SM, Leslie NR, Perera NM, Batty IH, Downes CP . (2004). The tumour-suppressor function of PTEN requires an N-terminal lipid-binding motif. Biochem J 379: 301–307.

    Article  CAS  Google Scholar 

  • Weinman EJ, Steplock D, Tate K, Hall RA, Spurney RF, Shenolikar S . (1998). Structure-function of recombinant Na/H exchanger regulatory factor (NHE-RF). J Clin Invest 101: 2199–2206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank NCI-CA107201 and the corresponding ARRA supplement (M-M. Georgescu), and NCI-CA16672 that partially supported the DNA sequencing and animal breeding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-M Georgescu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, J., Agarwal, N., Morales, F. et al. PTEN, NHERF1 and PHLPP form a tumor suppressor network that is disabled in glioblastoma. Oncogene 31, 1264–1274 (2012). https://doi.org/10.1038/onc.2011.324

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.324

Keywords

This article is cited by

Search

Quick links